
Sacha RUCHLEJMER

SEOC

2024

Ericsson

Torshamnsgatan 21, 164 40 Kista, Sweden

Secure Rewind and Discard on Arm Morello

from 21/02/2024 to 07/07/2024

Under the supervision of:

− Company supervisor: Merve, GÜLMEZ, merve.gulmez@ericsson.com

− Phelma Tutor: Cyrille, CHAVET, cyrille.chavet@grenoble-inp.fr

Confidentiality: □ yes ⊠ no

Ecole nationale
supérieure de physique,
électronique, matériaux

Phelma
Bât. Grenoble INP - Minatec
3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

http://phelma.grenoble-inp.fr

Contents

1 Introduction . 9
2 Background . 11

2.1 Memory safety . 11
2.2 Capability Hardware Enhanced RISC Instructions . . . 12
2.3 Secure Domain Rewind and Discard 15

3 Problem Statement: Limitation with CHERI and other defenses 17
4 Secure Domain Rewind and Discard on Arm Morello Board . . 19

4.1 High-level idea . 19
4.2 CHERI-SDRaD . 20

5 Evaluation . 33
5.1 Case study: Nginx . 33
5.2 Performance evaluation 33
5.3 Comparison to SDRaD on 64-bit x86 36

6 Conclusion . 38
7 References . 39
1 Appendices . 41

1.1 Appendix A: Project Timeline. 41

2

List of Figures

1 Capability representation. 13
2 CHERI capability layout, adapted from [1]. 13
3 Handling buffer overflows with canaries. 17
4 Handling buffer overflows with CHERI. 18
5 High-level idea of SDRaD for CHERI, adapted from [2]. 19
6 Handling buffer overflows with CHERI-SDRaD. 23
7 Problem with setjmp in the API. 24
8 Nginx Benchmark with 1 core. 35
9 Nginx Benchmark with 4 cores. 36
10 Project Timeline. 41

3

Listings

1 Example of unsafe code. 17
2 CHERI-SDRaD manager. 21
3 Unsafe code encapsulated into a new domain. 22
4 Assembly function that stores initialization metadata. 24
5 cheri_domain_init function. 26
6 Signal handler code. 27
7 An Example Function from TLSF library: offset_to_block

function. Extract from [3]. 29
8 CHERI Ported offset_to_block function. Adapted from [3]. . 29
9 Heap creation function. 30
10 Adapted malloc function. 31
11 Modified version of free. 31
12 The wrapped ngx_http_parse_request_line. 34

4

List of Tables

1 List of API functions. 21

5

Glossary

API Application Programming Interface. 20–25, 33

Assembly Assembly language is a low-level programming language that
uses mnemonic codes and symbols to represent instructions that can be
directly understood by a computer’s CPU (Central Processing Unit).
Unlike high-level languages, assembly language corresponds closely to
the machine code instructions of a specific computer architecture, mak-
ing it powerful for tasks requiring precise control over hardware re-
sources and performance optimization. 24, 25

C C is a general-purpose, procedural programming language. It provides
low-level access to memory and hardware, making it suitable for system
programming, such as operating systems and embedded systems. 11,
12, 17, 20, 23, 38

C++ C++ is an extension of the C programming language. It includes
object-oriented features such as classes and inheritance, making it suit-
able for large-scale software development. 11, 12

CHERI Capability Hardware Enhanced RISC Instructions. 9, 10, 12–15,
17–23, 25, 26, 28, 29, 31, 33–38

ISA Instruction-Set Architecture. 9, 12, 14

Kernel The kernel is the core component of an operating system, responsible
for managing system resources and facilitating communication between
hardware and software. It handles critical tasks such as process man-
agement, memory management, device management, and system calls,
ensuring efficient and secure operation of the computer system.. 15,
16, 34

LIFO Last In, First Out. 25

6

MMU Memory Management Unit. 12

MPK Memory Protection Key. 15, 26, 36, 38

OS Operating System. 12, 15, 16, 26, 27

RISC Reduced Instruction Set Computer. 9

SDRaD Secure Domain Rewind and Discard. 9, 10, 15, 16, 19–23, 25–29,
33–36, 38

TLSF Two-Level Segregated Fit. 28–32, 34–36, 38

UDI User Domain Index. 21–23, 25

7

Secure Rewind and Discard on Arm Morello

Acknowledgments
I would like to express my sincere gratitude to Merve Gülmez, my thesis
supervisor, security researcher at Ericsson, for her invaluable guidance, pa-
tience, and encouragement throughout this research. Her expertise and in-
sightful feedback were instrumental in shaping this work. She knew how to
give me all the keys I needed to accomplish this work.

I am also thankful to Cyrille Chavet, my school supervisor, for his support,
guidance, and for always being attentive to any questions I had.

I am also grateful to Thomas Nyman, a security expert at Ericsson, for his
help and support during crucial moments, and for always offering valuable
advice.

I would also like to extend my gratitude to Christoph Baumann, a researcher,
for his invaluable support, assistance in acquiring the resources I needed, and
offering valuable advice.

Special thanks to the other Master’s Thesis students and colleagues Sönke
and Panagiotis for their stimulating discussions and unwavering support.

This project is done at the network platform and telecommunication com-
pany Ericsson.

Sacha Ruchlejmer Phelma - July 2024 8

Secure Rewind and Discard on Arm Morello

1 Introduction
Numerous applications are developed using memory-unsafe languages, ren-
dering them susceptible to runtime attacks such as control-flow attacks and
data-oriented attacks. These vulnerabilities provide attackers with avenues
to gain unauthorized access to programs, by exploiting weaknesses to ma-
nipulate and corrupt their behavior. According to a U.S National Security
Agency report "The Case for Memory Safe Roadmaps" [4], two-thirds of re-
ported vulnerabilities in memory-unsafe programming languages still relate
to memory issues. Nowadays, there are well-known solutions to mitigate
these vulnerabilities like stack canaries [5], but at the end such mitigations
terminate the process to prevent attacks exploiting such vulnerabilities from
being successful, already corrupted memory will, under normal circumstances
prevent the normal operation of the applications. This is especially problem-
atic for service-oriented applications such as web-servers, which must main-
tain consistent service for all clients even in presence of malicious clients.

State-of-the-art approaches address two related challenges, 1) how to im-
prove the resilience of applications, and 2) how to prevent programs from
being exploited by memory-related attacks. Secure Domain Rewind and
Discard (SDRaD) [2] is prior work addressing the first challenge by al-
lowing parts of processes (i.e, sub-processes or routines) to be isolated by
creating new, logical protection domains within a conventional process, each
with its own stack and heap distinct from the main application stack and
heap, and those of other domains. Thanks to this in-process isolation it
is possible to discard any domains which memory is corrupted by run-time
attacks and going back to a safe anchor point allowing the application to
continue running even if the part is corrupted.

Capability Hardware Enhanced RISC Instructions (CHERI) [6]
is prior work addressing the second challenge by extending conventional hard-
ware Instruction-Set Architectures (ISAs) with new architectural features to
enable fine-grained memory protection and highly scalable software compart-
mentalization. It uses the concept of capability-based addressing to store
metadata, such as bounds information about pointers that is used to prevent
buffer overflows from happening.

The objective of this thesis is to integrate SDRaD with CHERI to in-
troduce resilience into this novel architecture and leverage its security ad-
vantages to make it more lightweight and address previous limitations by
leveraging the compartmentalization capabilities in CHERI.

Sacha Ruchlejmer Phelma - July 2024 9

Secure Rewind and Discard on Arm Morello

In this thesis, Section 2 explains memory-related attacks and explores
the concept of CHERI, including an introduction to the secure rewind and
discard concept. Section 3 discusses the current limitations of CHERI and
stack canaries, highlighting areas where improvements are needed. Section 4
introduces the high level adaptation for secure rewind and discard to the
CHERI architecture (see in Section 4.1), explains the implementation of the
CHERI-SDRaD library (see in Section 4.2), examines use cases and discusses
the performance overhead (see in Section 5). Lastly, the result of this thesis
is discussed in Section 6.

Secure Rewind and Discard on Arm Morello Master’s Thesis artifact will
be available at https://github.com/secure-rewind-and-discard/.

Sacha Ruchlejmer Phelma - July 2024 10

https://github.com/secure-rewind-and-discard/

Secure Rewind and Discard on Arm Morello

2 Background

2.1 Memory safety

In programming, memory safety is a critical concern that should be addressed
to prevent undesirable behaviors. Many memory issues arise from developer
errors rather than from the language itself. Today, memory-safe languages
have demonstrated potential in mitigating a broad range of threats. However,
they often come with trade-offs, such as increased resource requirements for
executing code and limitations on developers’ ability to manage low-level
memory. As a result, memory-unsafe languages such as C and C++ remain
widely utilized due to their unmatched performance control and suitability
for tasks that demand direct memory manipulation [7].

Memory violations Memory violations occur when a program accesses
memory in an unintended or unauthorized way, leading to unpredictable
behavior or crashes.

Runtime attacks Runtime attacks exploit vulnerabilities during program
execution, often targeting memory-related weaknesses to inject malicious
code or alter the program’s intended flow.

Control-flow attacks Control-flow attack is one class of runtime attacks.
It involves manipulating the sequence of instructions executed by a program,
typically through exploiting vulnerabilities in control-flow mechanisms like
function pointers or return addresses. Control-flow attacks can be categorized
into two main types: code-injection and code-reuse attacks. Code-injection
attacks utilize methods like buffer overflows to manipulate the return address
of functions, redirecting the program execution to previously introduced ma-
licious code. On the other hand, code-reuse attacks aim to alter the ap-
plication’s behavior by modifying return addresses to unintended existing
functions.

Buffer overflows Buffer overflows happen when a program writes data
beyond the allocated buffer space, potentially overwriting adjacent memory,
which can be exploited by attackers to execute arbitrary code or manipulate
program behavior. It can be used to overwrite a previous return address
with a new one, redirecting execution to a malicious program injected by an
adversary. This vulnerability can manifest in various forms; two significant

Sacha Ruchlejmer Phelma - July 2024 11

Secure Rewind and Discard on Arm Morello

examples include during memory copy operations between variables of dif-
ferent sizes and when an application accepts inputs without verifying if they
exceed the allocated buffer size.

Data-oriented attacks Data-oriented attack is another class of runtime
attacks. It focuses on exploiting vulnerabilities related to how data is pro-
cessed and accessed within a program, aiming to gain unauthorized access to
sensitive information or modify program state. Unlike control-flow attacks,
which manipulate the program’s execution flow, data-oriented attacks often
target weaknesses in how data are handled, such as insecure data storage,
inadequate input validation, or insufficient data sanitization. These vulnera-
bilities can be exploited to steal sensitive information or manipulate program
behavior to the attacker’s advantage.

2.2 Capability Hardware Enhanced RISC Instructions

CHERI (Capability Hardware Enhanced RISC Instructions) [6] represents a
collaborative research between SRI International and the University of Cam-
bridge, aimed at reevaluating fundamental design principles in both hardware
and software to significantly enhance system security.

CHERI augments traditional hardware ISAs with novel architectural el-
ements, enabling fine-grained memory protection and scalable software com-
partmentalization. These enhancements in memory protection empower mem-
ory unsafe programming languages like C and C++ to offer robust, com-
patible, and efficient defenses against many memory-related attacks such as
buffer overflow. Additionally, the scalable compartmentalization capabilities
of CHERI enable fine-grained segmentation of Operating System (OS) and
application code, thereby mitigating the impact of security vulnerabilities in
ways not previously feasible with existing architectures.

Notably, CHERI adopts a hybrid capability architecture, integrating ar-
chitectural capabilities with conventional Memory Management Unit (MMU)-
based architectures, microarchitectures, and established software stacks built
on virtual memory and C/C++. This approach allows for gradual and easier
integration into existing ecosystems [1].

Capability-Based addressing

CHERI employs a capability-based addressing scheme. The principle is to
replace classical pointers with protected objects called capabilities, which
will store, in addition to the pointer address, additional information like
permissions or the pointer’s intended bounds.

Sacha Ruchlejmer Phelma - July 2024 12

Secure Rewind and Discard on Arm Morello

Figure 1: Capability representation.

As illustrated in Figure 1, capability-based addressing not only reveals
the precise memory location occupied by a capability, but also enables the
detection of overflows or overreads before they can occur by explicitly defining
the bounds within the pointer’s own definition.

CHERI capability layout

The in-memory layout of a CHERI capability is shown in Figure 2 where
it is depicted as consisting of two layers. The lower layer represents the
conventional pointer familiar in traditional programming, while the upper
layer includes all the additional information that transforms the pointer into
a capability, thus rendering it a protected object. One notable observation is
that while a conventional pointer typically occupies 64 bits of memory, the
introduction of capabilities necessitates doubling this space to 128 bits.

Figure 2: CHERI capability layout, adapted from [1].

This architecture introduces several enhancements to improve data security
and integrity:

1. Validity Tag (①): Each capability is associated with a 1-bit validity
tag, which is maintained automatically in registers and memory. The

Sacha Ruchlejmer Phelma - July 2024 13

Secure Rewind and Discard on Arm Morello

tag tracks the validity of a capability and ensures that special capabil-
ity write instructions are needed to create valid capabilities. Regular
memory writes, even partial ones, to the memory area of the capability
clear the validity tag and invalidate the capability, preventing corrupt
capabilities from being dereferenced.

2. Permissions (②): The permissions mask controls how the capability
can be used, such as by restricting loading (read) and storing (write) of
data and/or capabilities, or by prohibiting instruction fetch (execute).
Every load, store, or instruction fetch in a CHERI-enabled micropro-
cessor architecture must be authorized by an architectural capability
with the corresponding permissions.

3. Object Type (Otype) (③): Object types allow multiple capabilities
to be associated with each other, facilitating software compartmental-
ization where only a specific set of capabilities can be used within a
logically isolated compartment.

4. Bounds (④): The lower and upper bounds describe the portion of the
address space to which the capability authorizes loads, stores, and/or
instruction fetches, depending on the permissions the capability grants.

5. Baseline Architecture Address (⑤): A conventional pointer in the
underlying ISA native format.

CHERI implements two modes of operation. The first, called hybrid
mode, allows conventional pointers and CHERI capabilities to coexist and
be used independently. In most cases, this enables programs that were not
originally developed for a CHERI architecture to continue functioning on
CHERI-enabled hardware. The second mode, known as pure-capability (of-
ten referred to as purecap), is the most secure mode of operation. In this
mode, pointers are completely replaced by capabilities, resulting in the most
secure programs utilizing CHERI technology.

Arm Morello Board

The Arm Morello development board (referred to as subsequently as simply
“the Morello board") [8] is an industrial demonstrator of a capability ar-
chitecture developed by Arm, featuring a prototype System-on-Chip (SoC).
This board incorporates a CHERI-extended ARMv8-A processor, GPU, pe-
ripherals, and a memory subsystem. The Morello board allows for hardware
and software to be tested in real-world conditions, enabling the evaluation

Sacha Ruchlejmer Phelma - July 2024 14

Secure Rewind and Discard on Arm Morello

of CHERI’s viability and performance impact. Its primary objectives are to
facilitate industrial evaluation of CHERI hardware and software concepts,
gather evidence for potential adoption, and support ongoing research and
development. By integrating CHERI into a widely deployed, real-world ar-
chitecture with a high-end, mature processor design and a robust software
ecosystem, the Morello board aims to advance the practical application of
these technologies.

The Morello board runs an adapted version of the FreeBSD OS called
CHERIBSD. The experimental work described in this thesis has been con-
ducted using a Morello board on loan to Ericsson to obtain firsthand insight
into the performance metrics, rather than relying solely on simulated data,
which could be influenced by the underlying hardware support.

2.3 Secure Domain Rewind and Discard

SDRaD (Secure Domain Rewind and Discard)[2] project aims to improve
the resilience of applications against run-time attacks. Indeed, today’s mit-
igation techniques against run-time attacks terminate the application when
they detect an attack. However, terminating the application in response
to an attack is disruptive to service-oriented applications that service many
independent clients simultaneously. If the service process is terminated all
clients being serviced will lose their connections because of one attack. Moti-
vated by this, alternative approaches are being explored, with SDRaD being
one of them. The main idea behind SDRaD is to isolate different parts of
a program from each other in separate domains using in-process isolation.
This domain mechanism allows the code inside it to be executed in a differ-
ent part of memory than the process’s own. When a new domain is created,
it initializes with its own stack and heap. Additionally, to prevent access
to unwanted memory spaces, such as those of other domains, an isolation
mechanism, such as Memory Protection Keys (MPKs) is used to check if the
rights to use this memory space are present. This isolation prevents domains
from accessing each other’s memory, which stops any domain affected by a
run-time attack from corrupting memory belonging to another domain.

The initial SDRaD prototype implementation targeted the 64-bit x86 ar-
chitecture and utilized MPK, a technology developed by Intel and introduced
in the "Skylake" microarchitecture [9]. MPK is a hardware feature that pro-
vides memory protection at the page granularity. The main purpose of MPK
is to allow software developers to define memory regions with specific protec-
tion keys. This enables fine-grained control over memory access without the
need to rely on kernel-enforced access control for memory pages, which is re-
quired for regular processes. Such reliance adds a costly context switch every

Sacha Ruchlejmer Phelma - July 2024 15

Secure Rewind and Discard on Arm Morello

time the execution context changes from one protection domain to another.
In practice, MPK works by associating a protection key with each memory
page. The permissions for the keys are stored in a special register called the
protection key register, and the keys are added to the page table. The page
table is a data structure used by the OS to map virtual addresses to physical
addresses in memory. A program can specify a protection key when accessing
a memory page, and the processor checks if the provided key matches the key
associated with that page without involving the kernel. If the keys match,
memory access is allowed; otherwise, an exception is triggered.

In summary, SDRaD provides an in-process-based solution that allows
compartmentalizing the application into distinct domains, where each do-
main operates independently and can be discarded if its memory has been
corrupted, and guarantees that memory belonging to other domains are un-
affected.

Sacha Ruchlejmer Phelma - July 2024 16

Secure Rewind and Discard on Arm Morello

3 Problem Statement: Limitation with CHERI
and other defenses

The limitations of current mitigation techniques and the defense provided
by CHERI is demonstrated in Listing 1, 3 and 4 using a small program that
prompts a user to enter characters into the program buffer.

1 void get_request (){
2 char buff [5];
3 printf("Waiting for the request :\n");
4 scanf("%s",buff);
5 printf("Handling the request\n");
6 }
7
8 int main(void){
9 int i = 0;

10 for(i = 0; i < 5; i++){
11 get_request ();
12 }
13
14 return 0;
15 }

Listing 1: Example of unsafe code.

Listing 1 shows an example of a program that uses an unsafe C function,
scanf(), to read user input. The scanf() function is implemented in the
correct way, but it’s unsafe because it has no robust input validation. In
classic C, entering a string larger than the buffer size does not generate an
error. Although there are existing solutions such as stack canaries [5] that
can detect such attacks, as shown in Figure 3.

Figure 3: Handling buffer overflows with canaries.

As illustrated in Figure 3, the stack canaries are able to detect when a
user attempts to input too many characters into the buffer. A stack canary
is a random value placed after local variables on the stack. Before and after
potentially unsafe operations (e.g. updating local variables), the program
checks the integrity of the canary value. If the program detects that the
canary was overwritten, it indicates that the input exceeds the size allocated
for the variable, resulting in a buffer overflow. As a result, because already
corrupt memory cannot be recovered, the application must be terminated
completely upon detecting the buffer overflow.

Sacha Ruchlejmer Phelma - July 2024 17

Secure Rewind and Discard on Arm Morello

However, with the use of CHERI capabilities and their metadata describ-
ing the bounds of the object a pointer refers to, such as the buffer buff in
Listing 1, it becomes possible to detect at the hardware level if the string
intended for the buffer exceeds the allocated size. As illustrated in Figure 4,
CHERI raises an exception if the string exceeds the specified bounds of the
capability.

Figure 4: Handling buffer overflows with CHERI.

CHERI is also able to detect attempts to perform a buffer overflow. In
this case the detection occurs before any memory corruption takes place.
Therefore, using CHERI provides better defense because the memory remains
intact. However, it does not address the issue of resilience, as the program
is immediately stopped upon detecting a memory violation.

The Problem Statement

How can the memory-safety guarantees provided by the CHERI archi-
tecture be combined with Secure Rewind and Discard to improve soft-
ware resilience against run-time attacks?

Sacha Ruchlejmer Phelma - July 2024 18

Secure Rewind and Discard on Arm Morello

4 Secure Domain Rewind and Discard on Arm
Morello Board

The goal of this thesis is to adapt the Secure Domain Rewind and Discard
to the CHERI architecture, allowing vulnerable applications to be recovered
upon detecting an attack. CHERI is capable of detecting buffer overflows
before memory corruption occurs. This method eliminates the need to com-
partmentalize the stack when creating new domains, thereby allowing for a
lighter-weight SDRaD design. The design requires:

1. Creating return points that splits the application into distinct crash-
resistant domains.

2. Leveraging CHERI’s hardware capabilities to detect attacks.

3. Heap compartmentalization to keep track of domain heap allocation.

4.1 High-level idea

The objective of adapting SDRaD to the CHERI architecture is to provide a
solution that allows for crash-resistance and resilience against runtime attacks
that exploit memory vulnerabilities but also to make it lighter and with better
performance compared to the prototype SDRaD implementation targeting
64-bit x86.

Figure 5: High-level idea of SDRaD for CHERI, adapted from [2].

Figure 5 illustrates the high-level idea of SDRaD. If a particular section
of code in a program is at risk and needs to be isolated with the possibility of
being rewound, it can be placed into a new domain. Initially, the application

Sacha Ruchlejmer Phelma - July 2024 19

Secure Rewind and Discard on Arm Morello

runs within the main domain. Before executing the risky code, a new domain
is created ① by saving the execution context (i.e., the program’s status) and
the current memory address to establish a checkpoint for potential rollback.
The program then enters the newly created domain. ② Within this domain,
two scenarios are possible. If memory corruption is detected, the domain exits
prematurely with an abnormal exit ③, destroys the faulty domain, restores
the saved execution context, and returns to the main domain, indicating
the previously created domain exited abnormally. The caller is expected
to handle abnormal exits, similar to code that might throw exceptions. If
no memory corruption is detected, the domain exits normally ④, and the
program continues its usual flow. In that case, this domain still exists and can
be used again later. This approach ensures that risky code can be isolated
and rewound from if necessary, without affecting the main domain, thus
enhancing the program’s resilience.

4.2 CHERI-SDRaD

The CHERI-SDRaD C library was developed to adapt SDRaD for the CHERI
architecture using approximately 1.2k LoC of C code and 20 lines of Arm
assembly code. This library provides an Application Programming Interface
(API) that allows developers to integrate secure rewind and discard mecha-
nisms into their applications. The following section will describe the design
and implementation of the CHERI-SDRaD library.

Domain Manager

To manage the domains created within the application, a global manager was
introduced, as illustrated in Listing 2. The Domain Manager is defined as a
global variable so that it can be accessed from anywhere in the code. It has
two members: the first one, active_domain ①, indicates the current domain,
and the second, domain_info ②, stores the informations about currently
existing domains. One limitation of the Domain Manager is that domain
information is stored in an array with a static size (here 16). The maximum
number of domains supported by the CHERI-SDRaD library must be defined
at compilation time. This limitation could be addressed in future work by
dynamically defining the domains, such as using a linked list. However, one
advantage of the array-backed domain information storage is that information
of any domain can be accessed in constant-time.

Sacha Ruchlejmer Phelma - July 2024 20

Secure Rewind and Discard on Arm Morello

1 #define NUMBER_MAX_DOMAIN 15
2 enum State{UNINIT , INIT};
3
4 typedef struct _return_reg_type_s {
5 void *c29;
6 void *c30;
7 }return_reg_type_s;
8
9

10 typedef struct _domain_info_s {
11 jmp_buf env;
12 return_reg_type_s return_address;
13 tlsf_t tlsf;
14 uint32_t parent_udi; ➂
15 enum State domain_init;
16 enum State heap_init;
17 } domain_info_s;
18
19
20 typedef struct _global_manager_s{
21 uint32_t active_domain; ➀
22 domain_info_s domain_info[NUMBER_MAX_DOMAIN +1]; ➁
23 } global_manager_s;

Listing 2: CHERI-SDRaD manager.

Furthermore, the CHERI-SDRaD manager includes a parent_udi ③ in
the domain_info section. This means that domain nesting, i.e., having one
domain inside another, is possible recursively within this implementation.

CHERI-SDRaD API

Developers can use the API specified in Table 1 to improve resilience inside
their application.

API function name arguments description

① cheri_domain_setup() udi Create a new domain with
the specified udi

② cheri_domain_enter() udi Enter inside an already created
domain with its udi

③ cheri_domain_exit() - Exit from the current
domain

Table 1: List of API functions.

Domains are initialized by invoking cheri_domain_setup ①. This func-
tion creates a new domain with a unique User Domain Index (UDI) and
prepares it for use by saving the execution context and the return address to
the Domain Manager, and completes the initialization process. Upon initial-
ization, this call provides a return value: a positive value indicates successful
initialization or that the domain with the specified UDI is already initial-
ized, while a negative value signifies an out-of-bounds UDI. Once initialized,

Sacha Ruchlejmer Phelma - July 2024 21

Secure Rewind and Discard on Arm Morello

a domain can be entered using cheri_domain_enter ②. This operation re-
turns an error code if the specified UDI is out of bounds or not associated
with any existing domain. Conversely, it provides a success code if the UDI
is correct, enabling entry into the specified domain. When a domain is no
longer needed, it can be exited by calling cheri_domain_exit ③, returning
to its parent domain.

Listing 3 illustrates how the previous unsafe code can be encapsulated
into a domain to ensure resilience in case of any corruption.

1 int main(void){
2 int i = 0;
3 int err;
4 int uid = 1;
5 for(i = 0; i < 5; i++){
6 ➄ err = cheri_domain_setup(uid); ➀
7 if(err == SUCCESSFUL_INITIALIZE || err == ALREADY_INITIALIZE){
8 cheri_domain_enter(uid); ➁
9 get_request (); ➃

10 cheri_domain_exit (); ➂
11 } else {
12 printf("Bad input!\n");
13 }
14 }
15
16 return 0;
17 }

Listing 3: Unsafe code encapsulated into a new domain.

By using the API, the get_request ④ function now operates in a dif-
ferent domain from the main application. The err variable ⑥ captures the
return value sent by cheri_domain_setup. If this value indicates successful
initialization, err will have a positive value, signifying that the domain is
correctly initialized. In this case, the if condition is met, allowing entry into
the domain to start computing the unsafe function.If no bad behavior is de-
tected during the execution of the unsafe function, the domain is exited by
calling cheri_domain_exit, and the for loop continues from the next itera-
tion. However, if the user provides input that would overflow the destination
buffer, the invalid buffer operation is detected by CHERI, but the signal in-
dicating that an invalid memory access was about to happen is captured by
a signal handler in CHERI-SDRaD, which causes a abnormal domain exit.
This is indicated to the caller via a false return value stored in err. Conse-
quently, the if condition is no longer satisfied, causing the program to enter
the else block, which warns the user about the invalid input.

Figure 6 shows, using the example application from Listing 3, how using
CHERI-SDRaD handles buffer overflows in a domain. When a user submits
an input that is too large, the routine is interrupted, causing the domain to
exit without completing the execution of the code inside. As a result, when
encountering a bad input, the request is not processed further. However,

Sacha Ruchlejmer Phelma - July 2024 22

Secure Rewind and Discard on Arm Morello

a too large input does not stop the application; it continues running until
completion. Therefore, the resilience of this application has been improved
by using CHERI-SDRaD.

Figure 6: Handling buffer overflows with CHERI-SDRaD.

Saving the execution context

To efficiently handle abnormal domain exits and safely rewind to the main
domain. When establishing a new domain, three pieces of information must
be preserved: the new UDI, which identifies the newly created domain; the
domain rewind address, which instructs the system on where is the entry
point to which execution is rewound if the domain needs to be abnormally
exited; and the execution context, encompassing all the elements that are
required to allow a program to resume its operation at the specific point and
state before the domain was created. This includes the stack pointer, the
program counter, the link register, and all general-purpose registers. The
UDI and domain rewind address are straightforward to retrieve and store
as they can be directly accessed within the code. However, saving the ex-
ecution context and being able to return to it requires using a special C
standard library call, setjmp. The setjmp API library provides two func-
tions: setjmp(), which saves the execution context, and longjmp(), which
allows to return to a previously saved execution context, effectively restor-
ing the state to where setjmp() was called. The setjmp() function takes
one argument of type jmp_buf, which is a special type provided by the API.
When called, setjmp() stores the execution context in the jmp_buf variable
given as an argument. The longjmp() function takes two arguments: the
first one is a jmp_buf variable, which represents the execution context to be
restored, and the second one is a strictly positive value which specified the
return code code for setjmp().

Sacha Ruchlejmer Phelma - July 2024 23

Secure Rewind and Discard on Arm Morello

Normally, setjmp() would be used to save the execution context, but
with the API adding an intermediate function layer, the execution context
cannot be save as usual. The problem is shown in Figure 7.

(a) Normal setjmp. (b) Setjmp inside API.

Figure 7: Problem with setjmp in the API.

Invoking longjmp() with a stored context created in a function that has
already returned results in undefined behavior. The solution is to devise a
trampoline directly in assembly code. This trampoline ensures the context
stored in the jmp_buf when cheri_domain_setup is invoked matches the
context of the caller. By using an assembly function and directly manipulat-
ing memory, this trampoline tricks the system into believing that the call to
setjmp() occurred within the same function that initiated the API call. Af-
ter the context has been saved, the trampoline invokes the code that creates
the necessary run-time structures for the new domain, as shown in Listing 4.

1 cheri_domain_setup:
2 stp c29 , c30 , [csp , #-32]! ➀ // store the rewind address on the

stack
3 str c0, [csp , # -16]! ➁ // store the udi on the stack
4 sub csp , csp , #512 // store some space for the env

variable on the stack
5
6 mov c0, csp ➂ // give the environnement variable

to setjmp
7 bl setjmp@PLT
8 cbnz w0 ,.ljmp // if non 0 go to .ljmp
9 mov c0, csp ➃

10 bl cheri_domain_init@PLT
11
12 add csp , csp , #528 // restore the stack pointer
13 ldp c29 , c30 , [csp], #32 ➄ // restore the return address and

the stack pointer
14 ret c30 ➅
15
16
17 .ljmp:
18 bl cheri_domain_destroy@PLT
19 ldp c29 , c30 , [c0] // load the return address
20 add csp , csp , #0x230 // restore the stack pointer
21 ret c30 ➆

Listing 4: Assembly function that stores initialization metadata.

Sacha Ruchlejmer Phelma - July 2024 24

Secure Rewind and Discard on Arm Morello

The assembly function, cheri_domain_setup(), illustrated in Listing 4
is the one used by the API to initiate a new domain. As mentioned earlier, to
create a new domain, three pieces of information(UDI, execution context and
return address) need to be saved by employing a trick within the application.

In assembly, a limited number of registers are available for data manip-
ulation. One way to overcome this limitation is by saving register values
onto the stack, which is a memory area functioning as a Last In, First Out
(LIFO) structure. The stack pointer register (here csp) points to the last
empty location in this memory area.

When a function is called, the address of the call is automatically stored in
the c30 register. The first step of this trick is to decrement the stack pointer
to allocate space for storing the domain rewind address, the UDI of the new
domain and the execution context ①. The second line of the assembly code
stores the value of c0 on the stack because when an argument is passed to a
function, it is stored in the c0 register for later use ②.

Note that, Arm Morello architecture [10] defines that if branch with a
link instruction generates a sealed capability in c30, to unseal c30 later it
must be used in a valid unseal, operation, such as ret in ➅, ➆. The sealed
c30 and frame pointer in c29 need to be saved and restored using the store
capability pair (STP) ➀ and load capability pair (LDP) ➄ instructions to
avoid invalidating their tag bits.

The next step is to store the current stack pointer into c0. Recall that the
stack pointer holds the address of the newly allocated jmp_buf allocated on
the stack. By storing that address into c0 the address is passed as argument
to setjmp() that will save the execution context into the allocated space ③.
The setjmp() function returns 0 if the execution context was saved success-
fully. A non-zero return value for setjmp() indicates it was executed as a
result of a longjmp() call that restored the previously saved execution con-
text. The latter case corresponds to an abnormal domain exit, in which case
the trampoline code destroys the saved information for the faulting domain
by calling the internal cheri_domain_destroy() functions and returns from
the trampoline by restoring the saved return address from jmp_buf.

The final part of the trampoline ④ is to store the stack pointer into c0
so that cheri_domain_init() can access it as an argument and store these
variables. Listing 5 illustrates this function. The cheri_domain_init()
function will store the execution context, the UDI, and the rewind address
from the stack into variables ①. These variables will eventually be stored in
the CHERI-SDRaD Manager if the initialisation is successful. The order of
the fields in the cheri_init_stack_s struct is important because, since the
stack operates on a LIFO basis, the last argument stored in the assembly
code will be the first one stored in the cheri_init_stack_s and vice-versa.

Sacha Ruchlejmer Phelma - July 2024 25

Secure Rewind and Discard on Arm Morello

The next steps are to check if this domain can be created ②, and if so, to
verify if it already exists ③. If initialization of the domain is successful and it
does not already exist, then the domain is initialized ④. The parent domain
that invoked the creation of this new domain is saved ⑤, along with the
rewind address ⑥ and the execution context ⑦, stored in the domain_info
field of the CHERI-SDRaD Manager.

1 struct cheri_init_stack_s{
2 jmp_buf env;
3 uint64_t udi;
4 return_reg_type_s return_address;
5 };
6
7 int cheri_domain_init(void *base_address){
8 struct cheri_init_stack_s *cis_ptr;
9 cis_ptr = (struct cheri_init_stack_s *) base_address; ➀

10 long udi = cis_ptr ->udi;
11 global_manager_s *gm_ptr = &cheri_sdrad_manager;
12
13
14 if(udi > (NUMBER_MAX_DOMAIN) || udi < 1){ ➁
15
16 printf("invalid udi , you should choose one between 1 and %d\n",

NUMBER_MAX_DOMAIN);
17 return UDI_OUT_OF_BOUNDS;
18 }
19
20 if(gm_ptr ->domain_info[udi]. domain_init == INIT){ ➂
21 printf("This domain is already initialised\n");
22 return ALREADY_INITIALIZE;
23 }
24 gm_ptr ->domain_info[udi]. domain_init = INIT; ➃
25
26 gm_ptr ->domain_info[udi]. parent_udi = manager.active_domain; ➄
27
28 gm_ptr ->domain_info[udi]. return_address = cis_ptr ->return_address; ➅
29 memcpy(gm_ptr ->domain_info[udi].env , cis_ptr ->env , sizeof(jmp_buf)); ➆
30
31 return SUCCESSFUL_INITIALIZE;
32 }

Listing 5: cheri_domain_init function.

CHERI protection violation handler

The second step in implementing resilience is to modify the application’s
behavior to prevent it from crashing. An application crash occurs when a
program encounters an error or a set of conditions that it cannot handle,
leading to an abrupt termination of its operation. SDRaD works on both
Intel and AMD architectures by detecting the SIGSEGV signal that can be
attributed to MPK-related access faults, such domain violation, or SIGABRT
sent as a result of a failed stack canary check. However, on the Morello
board, a CHERI capability fault is reported by the OS to the application
via a ”protection violation fault” (SIGPROT) signal. Therefore, the CHERI-

Sacha Ruchlejmer Phelma - July 2024 26

Secure Rewind and Discard on Arm Morello

SDRaD signal handler had to be adjusted accordingly, as illustrated in Listing
6.

1 __attribute__ ((constructor)) ➀
2 void cheri_setup_signal_handler ()
3 {
4 struct sigaction sa;
5 sa.sa_flags = SA_SIGINFO;
6 sa.sa_handler = cheri_signal_handler;
7 sigemptyset (&sa.sa_mask);
8 if (sigaction(SIGPROT , &sa, NULL) == -1) {
9 printf("sigaction");

10 }
11 }
12
13 void cheri_signal_handler(int signum)
14 {
15 global_manager_s *gm_ptr = &cheri_sdrad_manager;
16 domain_info_s *di_ptr = &(gm_ptr ->domain_info[gm_ptr ->active_domain]);
17 int udi = gm_ptr ->active_domain;
18
19
20 if(signum == 34){
21 if(udi != 0){
22 printf("SIGPROT detected\n");
23
24 longjmp(di_ptr ->env ,14);
25 }
26 else{
27 exit();
28 }
29 }else{
30 printf("signum: %d\n",signum);
31 }
32 }

Listing 6: Signal handler code.

The constructor attribute1 is a Clang attribute that allows a function
to run before the main execution start. This attribute is associated with
thecheri_setup_signal_handler function ①, ensuring that this function
is executed before the main function. The cheri_setup_signal_handler
will change the behavior of the OS signal delivery delivering mechanism to
use a custom handler when delivering SIGPROT. The new SIGPROT handler,
cheri_signal_handler(),verifies if a SIGPROT signal has indeed been de-
tected. If so, it also checks whether the active domain is not the main one,
closing the application if it is. Finally, if all conditions are met, it uses the
longjmp() function to restore the execution context saved prior to creating
this domain, allowing the program to resume from that point.

1https://clang.llvm.org/docs/AttributeReference.html#constructor

Sacha Ruchlejmer Phelma - July 2024 27

https://clang.llvm.org/docs/AttributeReference.html#constructor

Secure Rewind and Discard on Arm Morello

Heap management

Implementing heap management for CHERI-SDRaD allows to maintain sep-
arate heaps for different domains and ensures that allocations occur in the
appropriate heap. This is important to make sure that allocations that occur
in domains that exit abnormally can be freed without leaking memory.

Heap allocator Creating an isolated domain requires generating an iso-
lated heap for each domain. An attempt was made initially to adapt a
compartmentalizing allocator from the Cambridge CHERIs project [11] to
CHERI-SDRaD. The compartmentalizing allocator was designed for soft-
ware operating in hybrid-capability mode to compartmentalize its heap into
smaller, isolated areas. However, it was found during the adaptation of the
allocator for purecap mode that the proof-of-concept compartmentalizing
allocator did not support freeing individual allocations, only full compart-
ments. This posed an issue for integration into CHERI-SDRaD since an
allocator was needed that could be used as a drop-in replacement for POSIX
malloc() and free() on code paths exiting domains normally. The original
SDRaD prototype employs Two-Level Segregated Fit (TLSF) allocator that
allows allocations to be directed to distinct ”memory pools”. For a meaningful
comparison between CHERI-SDRaD and the 46-bit x86 SDRaD prototype, it
would be advantageous to adapt TLSF as well. However, that meant porting
the TLSF allocator to CHERI.

TLSF

The Two-Level Segregated Fit (TLSF) memory allocator is designed for effi-
ciency by reducing fragmentation and optimizing memory utilization. TLSF
divides memory into segregated blocks based on their size, establishing sep-
arate pools to cater to different ranges of block sizes. This segmentation
ensures that memory blocks are allocated with minimal wastage and frag-
mentation, as blocks of similar sizes are grouped together. TLSF employs
a two-level structure, consisting of broad and fine levels of segregation. At
the broad level, memory is divided into larger chunks, while at the fine level,
these chunks are further subdivided into smaller blocks. This hierarchical
organization facilitates efficient searching and allocation of memory blocks,
significantly reducing overhead and improving allocation speed. TLSF can
split or merge memory blocks as needed to accommodate varying allocation
sizes, further minimizing fragmentation and improving memory utilization.
Moreover, TLSF is designed with low overhead in mind, both in terms of
memory usage and processing time. This makes it particularly suitable for

Sacha Ruchlejmer Phelma - July 2024 28

Secure Rewind and Discard on Arm Morello

deployment in resource-constrained environments such as embedded systems
and real-time operating systems, where efficient memory utilization is critical
for optimal performance.

Implementation SDRaD TLSF is based on an open-source project devel-
oped by Matt Conte [3]. The TLSF implementation was ported to CHERI by
accommodating the increased size of the in-memory representation of CHERI
capabilities compared to the baseline architecture pointers where necessary.
For example, the ALIGN_SIZE_LOG2 variable was changed from 3 to 4 to en-
sure that the addresses of memory allocations made by TLSF are aligned to
16 bytes instead of 8 bytes. Moreover, the values of block_header_overhead
and block_start_offset need to be updated by doubling sizeof(size_t)
expressions because it is now using 16-byte capabilities. This is because the
CHERI architecture invalidates an assumption made by the original TLSF
developer that size_t represents the size of a pointer (in memory).

1 static block_header_t* offset_to_block(const void* ptr , size_t size) {
2 return tlsf_cast(block_header_t*, tlsf_cast(tlsfptr_t , ptr) + size);
3 }

Listing 7: An Example Function from TLSF library: offset_to_block
function. Extract from [3].

1 static block_header_t* offset_to_block(const void* ptr , size_t size) {
2 return tlsf_cast(block_header_t*, cheri_address_set(ptr , tlsf_cast(

tlsfptr_t , ptr)+ size));
3 }

Listing 8: CHERI Ported offset_to_block function. Adapted from [3].

As illustrated in Listing 7 and 8, to adapt TLSF to CHERI, it is nec-
essary to utilize CHERI functions to modify capabilities. Indeed, CHERI
use a single-provenance semantics, i.e, every capability needs to be derived
from another one. Within this function, acquiring a new capability from an
existing one requires the use of cheri_address_set to copy the permissions
and bounds of ptr to the new capability (ptr + size).

The porting of TLSF to CHERI required the modification of 7 lines out
of a total of 840 lines within TLSF, amounting to only 0.83% of the total
codebase.

Allocator functions

The next step is to modify the behavior of all the allocation process to man-
age each memory allocation, and associate a TLSF-pool for each domain to
obtain a different heap for each one of them. As illustrated in Listing 2, each

Sacha Ruchlejmer Phelma - July 2024 29

Secure Rewind and Discard on Arm Morello

domain possesses its own TLSF structure, representing the heap for that par-
ticular domain. The initial step involves defining a function to create these
separate heaps, as depicted in Listing 9.

1 void cheri_heap_init (){
2
3 size_t app_heap_size;
4 uintptr_t app_heap_address;
5 global_manager_s *gm_ptr = &cheri_sdrad_manager;
6 domain_info_s *di_ptr = &(gm_ptr ->domain_info[gm_ptr ->active_domain]);
7
8 char *pTmp;
9 pTmp = getenv("APP_HEAP_SIZE");

10
11 if(pTmp != NULL){
12 app_heap_size = atoi(pTmp);
13 }else{
14 app_heap_size = APP_DEFAULT_HEAP_SIZE;
15 }
16
17 app_heap_address = (uintptr_t)mmap(NULL , APP_DEFAULT_HEAP_SIZE ,

PROT_READ | PROT_WRITE , MAP_PRIVATE | MAP_ANONYMOUS , -1, 0);
18
19 if(app_heap_size <= TLSF_MAX_POOL_SIZE){
20 di_ptr ->tlsf = tlsf_create_with_pool ((void *) app_heap_address ,

app_heap_size);
21 }else{
22 di_ptr ->tlsf = tlsf_create_with_pool ((void *) app_heap_address ,

TLSF_MAX_POOL_SIZE);
23 app_heap_size = app_heap_size - TLSF_MAX_POOL_SIZE;
24 app_heap_address = app_heap_address + TLSF_MAX_POOL_SIZE;
25 while (app_heap_size > TLSF_MAX_POOL_SIZE)
26 {
27 tlsf_add_pool(di_ptr ->tlsf , (void *) app_heap_address ,

TLSF_MAX_POOL_SIZE);
28 app_heap_size = app_heap_size - TLSF_MAX_POOL_SIZE;
29 app_heap_address = app_heap_address + TLSF_MAX_POOL_SIZE;
30 }
31 tlsf_add_pool(di_ptr ->tlsf ,(void *) app_heap_address , app_heap_size);
32 }
33 }

Listing 9: Heap creation function.

The function illustrated in Listing 9 allows the user to create a dedi-
cated heap for the active domain in the application. First, the heap area is
allocated with mmap() on line 18. After that, to use the TLSF memory allo-
cator, this space needs to be associated with a pool. However, a single call
to tlsf_create_with_pool() or tlsf_add_pool() cannot use more than
TLSF_MAX_POOL_SIZE for the size of the heap. To address this limitation,
a while loop is introduced to add pools until the total size of the heap is
reached.

The cheri_heap_init() function is not intended to be called directly.
Instead, it is invoked by the malloc()-family of allocation functions. This
approach optimizes memory allocation by creating a dedicated heap only
when necessary.

Sacha Ruchlejmer Phelma - July 2024 30

Secure Rewind and Discard on Arm Morello

To achieve this, the classic malloc()-family of allocation functions were
overridden, as illustrated in Listing 10 with the new version of the malloc()
function using the TLSF memory allocator.

1 void *malloc(size_t size){
2 global_manager_s *gm_ptr = &cheri_sdrad_manager;
3 domain_info_s *di_ptr = &(gm_ptr ->domain_info[gm_ptr ->active_domain]);
4
5
6 if (di_ptr ->heap_init != INIT) {
7 cheri_heap_init ();
8 di_ptr ->heap_init = INIT;
9 }

10
11 void *ptr;
12 size_t rounded_len = __builtin_cheri_round_representable_length(size);
13
14
15 TLSF_MUTEX_LOCK ();
16 ptr = tlsf_malloc(di_ptr ->tlsf , rounded_len);
17 ptr = __builtin_cheri_bounds_set(ptr , rounded_len);
18 TLSF_MUTEX_UNLOCK ();
19
20 return ptr;
21 }

Listing 10: Adapted malloc function.

Listing 10 shows that in this new version of malloc(), the first step is
to check if the heap of the active domain is initialized. If it is not, the
cheri_heap_init() function will be called and the function continues. If it
is already initialized, the function just continues. The next step is to round
the size of the capability to ensure that it is a multiple of 16. Afterward, the
TLSF malloc allocator is called instead of the classical malloc() allocator.
Finally, the bounds are set to correspond to the size of the capability. With
the same idea, all the allocation functions were overridden to check if the
heap is initialized, to use the TLSF version of the allocation function, and
to correctly set the bounds according to the CHERI capabilities.

Not only the allocation function needed to be modified, the free() func-
tion needed also to be modified. These modifications are illustrated in Listing
11.

1 void free(void *ptr)
2 {
3 global_manager_s *gm_ptr = &cheri_sdrad_manager;
4 domain_info_s *di_ptr = &(gm_ptr ->domain_info[gm_ptr ->active_domain]);
5
6 TLSF_MUTEX_LOCK ();
7 ptr = __builtin_cheri_address_set(di_ptr ->tlsf ,

__builtin_cheri_address_get(ptr));
8 tlsf_free(di_ptr ->tlsf , ptr);
9 TLSF_MUTEX_UNLOCK ();

10 }

Listing 11: Modified version of free.

Sacha Ruchlejmer Phelma - July 2024 31

Secure Rewind and Discard on Arm Morello

All the capabilities allocated with TLSF are associated with a header.
This header precedes the capability in memory, specifically before the lower
bounds. The approach illustrated in Listing 11 involves creating a new capa-
bility derived from the entire heap but referencing the address of the capabil-
ity intended for deallocation. This allows access to the capability’s metadata
in its header. To achieve this, cheri_address_get() is called to obtain the
bounds and permissions of the entire heap using tlsf control structure. Subse-
quently, cheri_address_set() is invoked to generate a new capability using
the heap’s bounds and permissions, along with the address of the capability
planned for deallocation.

Sacha Ruchlejmer Phelma - July 2024 32

Secure Rewind and Discard on Arm Morello

5 Evaluation
One of the application domains that benefits from increased resilience is
service-oriented applications. Servers must have the capability to operate
within isolated domains, allowing for the independent shutdown and restart
of each domain. Additionally, maintaining a high-level of performance impact
is critical for servers. Therefore, the performance of SDRaD for CHERI was
evaluated on server software to determine if it is a viable approach to enhance
security and resilience.

5.1 Case study: Nginx

Nginx [12] is a versatile, open-source software that can be used as a web
server, reverse proxy, load balancer, and HTTP cache. Originally developed
by Igor Sysoev, Nginx is knowed for high performance, stability, and low
resource consumption, making it a popular choice for a wide range of web
server and proxy server needs. It is a multiprocessing application featuring
a master process and one or more worker processes. The master process
oversees the worker processes, which manage client HTTP requests across
multiple connections simultaneously. In case of a malicious client request
causing memory corruption, a worker process might crash. But fear not! The
master process promptly restarts it! Nevertheless, this does mean that any
ongoing connections handled by that specific worker are lost in the process.
Moreover, Nginx has recently been ported to CHERI, making it an ideal fit
as a study case for evaluation. The original SDRaD project [2] also used
Nginx as a case study.

5.2 Performance evaluation

Given its complexity and exposure to untrusted inputs, the HTTP parser
stands out as a potential vulnerability within Nginx. The solution involves
parsing each client HTTP request within a nested domain. To achieve this,
the ngx_http_parse_header_line and ngx_http_parse_request_line func-
tions are wrapped using the API, as depicted in Listing 12, specifically focus-
ing on the ngx_http_parse_request_line function. These functions will be
executed instead of the normal ones to proceed with the encapsulation.

Sacha Ruchlejmer Phelma - July 2024 33

Secure Rewind and Discard on Arm Morello

1 ngx_int_t __real_ngx_http_parse_request_line(ngx_http_request_t *r,
ngx_buf_t *b);

2 ngx_int_t __wrap_ngx_http_parse_request_line(ngx_http_request_t *r,
ngx_buf_t *b)

3 {
4 ngx_int_t rc;
5
6 cheri_domain_enter(NGX_NESTED_DOMAIN);
7 rc = __real_ngx_http_parse_request_line(r, b);
8 cheri_domain_exit ();
9

10 return rc;
11 }

Listing 12: The wrapped ngx_http_parse_request_line.

Consequently, in the event of detecting memory corruption within the
parser, an abnormal domain exit is triggered. This allows us to securely
discard the content associated with the nested domain and revert back to the
main domain without necessitating a restart of the worker process. Although
the connection to the malicious client is closed, all other connections remain
unaffected by this operation.

The performance evaluation of Nginx was conducted in four different
configurations: baseline (unmodified) Nginx, Nginx ported to CHERI in
purecap mode, purecap Nginx with the TLSF allocator and finally purecap
Nginx compartmentalized using CHERI-SDRaD as described in section 5.1.
Throughput measurements were obtained using the WRK [13] benchmarking
tool. WRK enables us to send a high volume of requests with various con-
figurations to assess the server’s performance. This tool allows us to specify
the number of simultaneous requests, the number of local machine cores to
utilize, and for how long the test should run. It was evaluated with 32 cores,
128 simultaneous requests for 1 minute. The benchmark uses WRK to re-
quest files of different sizes (0kB, 1kB, 4kB, 16kB), and to obtain the average
result, each benchmark for a specific file size is conducted 10 times to obtain
the average result.

The experiment employed two distinct machines: for server deployment,
the Arm Morello Board with 4 cores at 2.5GHz and 16GB of RAM run-
ning CheriBSD with a FreeBSD kernel version 14.0-CURRENT was utilized.
Meanwhile, the benchmark was executed on a separate machine equipped
with a 32-core Intel(R) Xeon(R) CPU E5-2658 0 clocked at 2.1GHz, along
with 66GB of RAM, operating on Ubuntu 22.04.4 with Linux kernel 5.15.0.
Nginx 1.24.0 release and 1.24.0-with-cheri-fixes release are used, and compiled
with -O2 optimization, also to enable Nginx for purecap mode is compiled
with -target aarch64-unknown-freebsd -march=morello
-mabi=purecap -Xclang -morello-vararg=new.

Sacha Ruchlejmer Phelma - July 2024 34

Secure Rewind and Discard on Arm Morello

Figure 8: Nginx Benchmark with 1 core.

Figure 8 summarizes the results of experiments conducted on the Ng-
inx server across four distinct configurations. Initially, the Nginx server was
tested without any additional modifications (baseline), establishing a refer-
ence point to observe the impact of different layers of security. The second
configuration involved Nginx with the CHERI modifications running in pure-
cap mode (purecap), serving as the baseline to assess the overhead introduced
by the solution. Since CHERI-SDRaD requires a specialized allocator, the
performance impact of the TLSF allocator in CHERI purecap mode was
evaluated without the CHERI-SDRaD library (purecap with tlsf). Finally, a
version of Nginx in CHERI purecap mode, compartmentalized with CHERI-
SDRaD using the TLSF allocator (purecap with sdrad), was evaluated. The
result of the benchmark using the CHERI-port of Nginx using 0kB files, de-
signed to ask the server to send a file of 0kB, showed a 0,78% degradation
of throughput in purecap mode, indicating the performance degradation of
CHERI being negligible compared to unmodified software on the Morello
board. Introducing the TLSF allocator to the CHERI-port of Nginx resulted
in a slightly higher throughput degradation of 1.73%, reflecting the increased
computational demands. Integrating CHERI-SDRaD into CHERI Nginx led
to a 2.22% throughput degradation, balancing security enhancements with
computational efficiency. These results demonstrate the viability of CHERI
integration and highlight the trade-offs between security and performance in
server configurations.

Figure 8 illustrates a benchmark conducted using a single core of the
Morello Board CPU. Additionally, an attempt was made to utilize all four
cores of the CPU, as depicted in Figure 9. However, the results were not

Sacha Ruchlejmer Phelma - July 2024 35

Secure Rewind and Discard on Arm Morello

reliable due to the inability to fully saturate the cores of the Morello Board.

Figure 9: Nginx Benchmark with 4 cores.

5.3 Comparison to SDRaD on 64-bit x86

By adapting SDRaD for the Arm Morello Board, several improvements were
noticed:

1. During the benchmarking of Nginx with the Intel-based version of
SDRaD, the measured overhead was approximately 5.70% for 1 worker
and 0kb case. Although a direct comparison with the 64-bit x86 version
of SDRaD is not possible, a smaller throughput degradation (2.22%)
was measured for CHERI-SDRaD on the Morello board. Additionally,
0.78% of the throughput degradation was attributed to CHERI purecap
mode, and approximately 0.95% to TLSF, suggesting that the relative
impact of CHERI-SDRaD on the Morello board is smaller than that
of SDRaD evaluated on an Intel-based architecture. Our conclusion
is thus that adapting SDRaD to a CHERI architecture resulted in a
more lightweight version with less performance impact compared to the
baseline 64-bit x64 version architecture.

2. In the 64-bit x64 version SDRaD a notable drawback of employing
Memory Protection Keys (MPK) lies in its reliance on tagging memory
pages with protection keys using the last 4 unused bits. Consequently,
this method is restricted to 16 distinct keys for tagging memory pages.
However, when basing compartmentalization on the run-time memory

Sacha Ruchlejmer Phelma - July 2024 36

Secure Rewind and Discard on Arm Morello

protection capabilities of CHERI, there is no longer a hardware limita-
tion on the number of domains that can be supported. Although our
software implementation limits the number of domains to the num-
ber of preallocated domain information storage slots (see section 4.2)
this software limitation could be lifted by employing an alternate de-
sign that dynamically scales the number of domain information storage
slots as needed.

Sacha Ruchlejmer Phelma - July 2024 37

Secure Rewind and Discard on Arm Morello

6 Conclusion
This thesis describes the design and implementation CHERI-SDRaD pro-
totype adaption of secure rewind and discard of isolated in-process domains
that leverages the memory-safety properties inherent to the CHERI. CHERI-
SDRaD results in a design with reduced performance degradation (2.2% in
Nginx benchmarks) compared to earlier results obtained with the original
SDRaD prototype on an Intel-based architecture. The adaption to CHERI
additionally allows limitations inherent to the earlier MPK-based approach
to be resolved.

The CHERI-SDRaD C library along with the CHERI-ported version of
TLSF memory allocator will be made open source at https://github.com/
secure-rewind-and-discard.

The library developed in this work could also be evaluated for other use-
cases, such as Memcached or lighttpd. Also, this work can be extended to
provide some level of automation similar to SDRaD-FFI [14].

Sacha Ruchlejmer Phelma - July 2024 38

https://github.com/secure-rewind-and-discard
https://github.com/secure-rewind-and-discard

Secure Rewind and Discard on Arm Morello

7 References
[1] R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann,

“An introduction to cheri,” Computer Laboratory, Tech. Rep.
UCAM-CL-TR-941, September 2019. [Online]. Available: https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

[2] M. Gülmez, T. Nyman, C. Baumann, and J. T. Mühlberg, “Rewind & dis-
card: Improving software resilience using isolated domains,” in 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2023, pp. 402–416.

[3] M. Conte, “tlsf.” [Online]. Available: https://github.com/mattconte/tlsf

[4] CISA, NSA, FBI, A. ACSC, CCCS, NCSC-UK, NCSC-NZ, and
CERT-NZ, “The case for memory safe roadmaps,” 2023. [Online]. Avail-
able: https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/
THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF

[5] B. Bierbaumer, J. Kirsch, T. Kittel, A. Francillon, and A. Zarras, “Smash-
ing the stack protector for fun and profit,” in ICT Systems Security and
Privacy Protection, L. J. Janczewski and M. Kutyłowski, Eds. Cham:
Springer International Publishing, 2018, pp. 293–306.

[6] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe,
“The CHERI capability model: Revisiting RISC in an age of risk,”
in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), Jun. 2014, pp. 457–468. [Online]. Available:
https://ieeexplore.ieee.org/document/6853201

[7] T. Nyman, “Toward Hardware-assisted Run-time Protection,” Doctoral
thesis, School of Science, 2020. [Online]. Available: http://urn.fi/URN:
ISBN:978-952-64-0065-5

[8] R. N. M. Watson, G. Barnes, J. Clarke, R. Grisenthwaite, P. Sewell,
S. W. Moore, and J. Woodruff, “Arm Morello Programme: Architectural
security goals and known limitations,” Computer Laboratory, University
of Cambridge, 15 JJ Thomson Avenue Cambridge CB3 0FD United
Kingdom, Technical Report UCAM-CL-TR-982, Jul. 2023. [Online].
Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-982.
pdf

Sacha Ruchlejmer Phelma - July 2024 39

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://github.com/mattconte/tlsf
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://ieeexplore.ieee.org/document/6853201
http://urn.fi/URN:ISBN:978-952-64-0065-5
http://urn.fi/URN:ISBN:978-952-64-0065-5
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-982.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-982.pdf

Secure Rewind and Discard on Arm Morello

[9] I. Corporation, “Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide,” https://www.intel.
com/content/www/us/en/developer/articles/technical/intel-sdm.html.

[10] Arm Ltd, Arm® Architecture Reference Manual Supplement Morello for
A-profile Architecture, Arm Ltd, Cambridge, UK, 2022, pROTO_REL
04. [Online]. Available: https://developer.arm.com/documentation/
ddi0606/latest/

[11] CapableVMs, “Compartmentalising allocator.” [Online]. Avail-
able: https://github.com/capablevms/cheri-examples/tree/master/
example_allocators/compartment_alloc

[12] I. Sysoev, “Nginx.” [Online]. Available: https://nginx.org/en/

[13] W. Glozer, “wrk - a http benchmarking tool.” [Online]. Available:
https://github.com/wg/wrk

[14] M. Gulmez, T. Nyman, C. Baumann, and J. Muhlberg, “Friend or foe
inside? exploring in-process isolation to maintain memory safety for
unsafe rust,” in 2023 IEEE Secure Development Conference (SecDev).
Los Alamitos, CA, USA: IEEE Computer Society, oct 2023, pp.
54–66. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SecDev56634.2023.00020

Sacha Ruchlejmer Phelma - July 2024 40

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/ddi0606/latest/
https://developer.arm.com/documentation/ddi0606/latest/
https://github.com/capablevms/cheri-examples/tree/master/example_allocators/compartment_alloc
https://github.com/capablevms/cheri-examples/tree/master/example_allocators/compartment_alloc
https://nginx.org/en/
https://github.com/wg/wrk
https://doi.ieeecomputersociety.org/10.1109/SecDev56634.2023.00020
https://doi.ieeecomputersociety.org/10.1109/SecDev56634.2023.00020

Secure Rewind and Discard on Arm Morello

1 Appendices

1.1 Appendix A: Project Timeline.

Figure 10: Project Timeline.

Sacha Ruchlejmer Phelma - July 2024 41

Abstract
Memory-unsafe programming languages such as C and C++ are the preferred
languages for systems programming, embedded systems, and performance-
critical applications. The widespread use of these languages makes the risk
of memory-related attacks very high. There are well-known detection mech-
anisms, but they do not address software resilience. An earlier approach
proposes the Secure Domain Rewind and Discard (SDRaD) of isolated do-
mains as a method to enhance the resilience of software targeted by runtime
attacks on x86 architecture, based on hardware-enforced Memory Protection
Key (MPK). In this work, SDRaD has been adapted to work with the Ca-
pability Hardware Enhanced RISC Instructions (CHERI) architecture to be
more lightweight and performant. The results obtained in this thesis show
that CHERI-SDRaD, the prototype adaption that leverages the memory-
safety properties inherent to the CHERI architecture, results in a solution
with less performance degradation (2.2% in Nginx benchmarks) compared
to earlier results obtained with the original SDRaD prototype on an Intel-
based architecture. The adaption to CHERI additionally allowed limitations
inherent to the MPK-based approach to be resolved.

Résumé

Les langages de programmation non sécurisés en mémoire, tels que C et
C++, sont les langages privilégiés pour la programmation système, les sys-
tèmes embarqués et les applications nécessitant de hautes performances.
L’utilisation répandue de ces langages rend le risque d’attaques liées à la
mémoire très élevé. Il existe des mécanismes de détection bien connus, mais
ils n’abordent pas la résilience logicielle. Une approche antérieure propose
Secure Domain Rewind and Discard (SDRaD) des domaines isolés comme
méthode pour améliorer la résilience des logiciels ciblés par des attaques à
l’exécution sur l’architecture x86, basée sur la technologie matérielle Mem-
ory Protection Key (MPK). Dans ce travail, SDRaD a été adapté pour fonc-
tionner avec l’architecture Capability Hardware Enhanced RISC Instructions
(CHERI) afin d’être plus léger et performant. Les résultats obtenus dans
cette thèse montrent que CHERI-SDRaD, le prototype d’adaptation qui ex-
ploite les propriétés de sécurité mémoire inhérentes à l’architecture CHERI,
offre une solution avec moins de dégradation des performances (2,2% dans les
benchmarks Nginx) par rapport aux résultats antérieurs obtenus avec le pro-
totype original SDRaD sur une architecture basée sur Intel. L’adaptation à
CHERI a également permis de résoudre les limitations inhérentes à l’approche
basée sur MPK.

	1 Introduction
	2 Background
	2.1 Memory safety
	2.2 Capability Hardware Enhanced RISC Instructions
	2.3 Secure Domain Rewind and Discard

	3 Problem Statement: Limitation with CHERI and other defenses
	4 Secure Domain Rewind and Discard on Arm Morello Board
	4.1 High-level idea
	4.2 CHERI-SDRaD

	5 Evaluation
	5.1 Case study: Nginx
	5.2 Performance evaluation
	5.3 Comparison to SDRaD on 64-bit x86

	6 Conclusion
	7 References
	1 Appendices
	1.1 Appendix A: Project Timeline.

