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Abstract—Well-known defenses exist to detect and mitigate
common faults and memory safety vulnerabilities in software.
Yet, many of these mitigations do not address the challenge of
software resilience and availability, i.e., whether a system can
continue to carry out its function and remain responsive, while
being under attack and subjected to malicious inputs. In this
paper we propose secure rewind and discard of isolated domains
as an efcient and secure method of improving the resilience of
software that is targeted by run-time attacks. In dierence to
established approaches, we rely on compartmentalization instead
of replication and checkpointing. We show the practicability of our
methodology by realizing a software library for Secure Domain
Rewind and Discard (SDRaD) and demonstrate how SDRaD can
be applied to real-world software.

Index Terms—software resilience, compartments, rollback

I . Introduction

A high level of availability for software systems is hard to
achieve. The problem becomes even harder when dependability
guarantees for distributed systems are required and software-
level attacks are in scope: software written in unsafe languages
can suer from various memory-related vulnerabilities [1] that
allow run-time attacks, such as control-ow attacks and non-
control-data attacks [2], to compromise program behavior and
let adversaries gain access to vulnerable systems.
According to the Google “0day In the Wild” dataset over

70% of the zero-day vulnerabilities between July 2014 and June
2022 can be attributed to memory-safety issues [3]. Research
into run-time attacks has, during the past 30 years, led to an
ongoing arms race between increasingly sophisticated attacks
and run-time defenses to mitigate such attacks [4]. Today, major
operating systems (OSs) provide such mitigations by default.
This includes non-executable stack and heap areas, address-
space-layout randomization (ASLR) [5], toolchain hardening
options such as stack canaries [6], and hardware-enforced
control-ow integrity (CFI) [7]. However, virtually all currently
known defenses mitigate detected attacks by terminating the
victim application [4], [8]–[23]. Thus, even though applications
are hardened against run-time attacks, the response can still be
leveraged by attackers to create availability issues and denial-
of-service (DoS) conditions while the application is restarted,
or to bypass security controls by resetting volatile system state,
e.g., counts of failed login attempts.

Mitigations that focus on system availability typically
involve application replication or checkpoint-and-restore mech-
anisms [24], which have a non-negligible performance impact
themselves. Service-oriented applications are at particular risk
as even a temporary failure in a critical component can aect
a large number of clients. An example for such an application
is Memcached, a general-purpose distributed memory-caching
system, which is commonly used to speed up database-driven
applications by caching database content. In this case, for
example, restarting the application after a fault can easily take
several minutes, while checkpointing or replication will have
to deal with the large runtime state of the application.
Contributions. To address limitations of current defenses and
to improve the resilience of software that is being targeted
by run-time attacks, we propose secure rewind and discard
of isolated domains: a mechanism that allows the state of a
victim application under attack to be eciently restored to
an earlier state that is known to be unaected by the attack.
This is possible by leveraging hardware-assisted software fault
isolation to compartmentalize the application into distinct
domains that limit the eects of run-time attacks to isolated
memory compartments. An application can be instrumented to
isolate, e.g., "high-risk" code that operates with untrusted input
in a secure in-process sandbox and rewind the application state
if an attack is detected against sandboxed code. Domains can be
nested to allow for ecient and secure rewinding in dierent
software architectures and use cases. In particular, service-
oriented applications can be augmented with resilience against
run-time attacks to limit the impact to concurrent clients.

We show the practicability of our methodology by realizing
a software library for secure domain rewind and discard
(SDRaD) for commodity 64-bit x86 processors with protection
keys for userspace (PKU) [25], [26] and demonstrate how
SDRaD can be applied to real-world software in case studies
on Memcached, a popular distributed memory-cache system
(§V-A), the NGINX web server (§V-B), and OpenSSL (§V-C).
In summary, the contributions of this paper are:
• Secure Rewind and Discard of Isolated Domains is a novel
scheme to improve software resilience against run-time
attacks by rewinding the state of a victim application (§ III).

• We explore dierent design patterns for compartmentaliza-



tion and rewinding and discuss their applicability to retrot
software with secure rewind and discard (§§ III-D to III-F).

• We provide SDRaD, a realization of secure rewinding for
commodity 64-bit x86 processors with PKU (§ IV, [27]).

• We show that SDRaD can be used with limited refactoring
of application code only, as we apply it in three case
studies (§ V). Benchmarks on Memcached and NGINX
exhibit a worst case performance overhead <7.2%, negligible
overhead (2%–4%) in realistic multi-processing scenarios,
and negligible memory overhead (0.4%–3%).

• We assess the security, applicability, and limitations of our
approach in § VI and compare it to related work in § VII.

I I . Background

Rollback recovery techniques [28] have been studied in
the context of a wide variety of applications ranging from
programming language constructs [29] to recovery protocols
for distributed system [28]. At a high-level, such techniques
described in prior work can be divided into checkpoint-
based and log-based approaches. Checkpoint-based techniques,
such as checkpoint & restore (§ II-A) rely on recording
transient system state so that it can later be recovered from a
previously prepared checkpoint. Checkpoints in prior work are
predominantly based on reproducing the process’s memory
image in a manner that can later be restored [24], [30]–
[34]. Log-based approaches [35] combine checkpointing with
recording the necessary information of nondeterministic events
to replay each event during the recovery process.
In this work, we avoid the pitfalls of checkpoints that

reproduce process memory by leveraging hardware-assisted
fault isolation to partition an application process into distinct,
isolated domains. This compartmentalization facilitates secure
rewinding of application state by isolating the eects of memory
errors. This enables rewinding to application states that precede
the point of failure in the application’s call graph and are
unaected by a caught and contained error.
Pre-existing work that bases rollback on compartmental-

ization properties is aimed at improving OS reliability to
driver failures [36], [37] or targets embedded systems [38].
In contrast, secure rewind and discard of isolated domains
targets application software in commercial o-the-shelf (COTS)
processors and does not require OS or hardware changes.

A. Checkpoint & Restore

Application checkpoint & restore [24] is a technique for
increasing system resilience against failure. By saving the state
of a running process periodically or before a critical operation,
a failed process can later be restarted from the checkpoint. The
cost of this depends on the amount of data needed to capture
the system’s state and the checkpointing interval.

Several studies have focused on optimizing system-level and
application-level checkpointing [30]–[32]. Secure checkpoint-
ing schemes [33] generally leverage cryptography to protect the
integrity and condentiality of checkpoint data at rest. However,
they generally do not consider attacks that tamper with
checkpointing code at the application-level. Furthermore, bulk

encryption of checkpoint data is too costly for latency-sensitive
applications, e.g., network trac processing or distributed
caches, unless load balancing and redundancy is present.

B. Software Fault Isolation

Software fault isolation (SFI) [39] is a technique for
establishing logical protection domains within a process through
program transformations. SFI instruments the program to
intermediate memory accesses, ensuring that they do not violate
domain boundaries. Since transitioning from one domain to
another stays within the same process, SFI solutions can
oer better run-time eciency compared to traditional process
isolation, especially in use cases where domain transitions are
frequent. SFI has been successfully deployed for sandboxing
plug-ins in the Chrome browser [40], isolating OS kernel [41]
and modules [10], [12], [16], as well as code accessed through
foreign function interfaces in managed language runtimes [42].

SFI enforcement can be realized in dierent ways. The prin-
cipal method to realize SFI for native code binaries is the use
of an inline reference monitor through binary [12] or compiler-
based rewriting [10], [16], [23], [43] of the application binary.
Recent SFI approaches leverage hardware-assistance (§ II-C)
to further improve enforcement eciency [44]–[56]. Existing
approaches to SFI share the drawback of memory vulnerability
countermeasures as they respond to detected domain violations
by terminating the oending process.

C. Memory Protection Keys

Memory protection keys (MPK) provide an access control
mechanism that augments page-based memory permissions.
MPK allows memory access permissions to be controlled
without the overhead of kernel-level modication of page table
entries (PTEs), giving it a signicant performance advantage
compared to completely OS-controlled memory protection fa-
cilities, e.g., mprotect() [19]. On 64-bit x86 processors, PKU
are supported in Intel’s [25] and AMD’s [26] microarchitectures.
Similar hardware mechanisms are also available in ARMv8-
A [57], IBM Power [58], HP PA-RISC [59] and Itanium [60]
processor architectures.
Each memory page is associated with a 4-bit protection

key stored in the page’s PTE on 64-bit x86 processors. The
access rights to memory associated with each protection key
are kept in a protection key rights register (PKRU) that allows
write-disable and access-disable policies to be congured for
protection keys. These policies are enforced by hardware on
each memory access.

I I I . Secure Domain Rewind and D i scard

We propose secure rewind and discard of isolated domains,
a novel approach for improving the resilience of userspace
software against run-time attacks that augments existing, widely
deployed run-time defenses. First, we present our threat model,
system requirements (§ III-A), and high-level idea (§ III-B).
§§ III-C to III-F delve into specic aspects of the design.
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A. Threat Model and Requirements

Assumptions. In this work, we assume that the attacker has
arbitrary access to process memory, but is restricted by the
following assumptions about the system:
A1 A W⊕X policy [4] restricts the adversary from modifying

code pages and performing code-injection.
A2 The application is hardened against run-time attacks and

can detect an attack in progress, but not necessarily prevent
the attacker from corrupting process memory.

We limit the scope of A2 to software-level attacks. Transient
execution [61] and hardware-level attacks, e.g., fault injec-
tion [62], rowhammer [63] etc., which are generally mitigated
at hardware, rmware, or kernel level, are out of scope.
Requirements. Our goal is to improve the resilience of an
application against active run-time attacks that may compromise
the integrity of the application’s memory. We introduce a
mechanism for secure rewind with requirements as follows:
R1 The mechanism must allow the application to continue

operation after system defenses (A2) detect an attack.
R2 The mechanism must ensure that the integrity of memory

after recovering from the detected attack is maintained.
To facilitate R1 and R2 the application is compartmentalized

into isolated domains with the following requirements:
R3 Run-time attacks that aect one domain must not aect

the integrity of memory in other domains
R4 The attacker must not be able to tamper with components

responsible for isolation or transitions between domains,
or data used as part of the rewinding process.

B. High-level Idea

The objective of the secure rewind mechanism is to recover
the application’s execution state, after a memory defect has
triggered, to a prior state before the application’s memory has
been corrupted (R2). Thus, the application can resume its exe-
cution and continue to provide its services without interruption
(R1). To facilitate this, the application is compartmentalized
into separate domains that each execute in isolated memory
compartments allocated from the process’s memory space.
Should the execution of code inside a domain fail due to a
memory defect, the memory that belongs to the domain must be
considered corrupted by the attacker. However, since the eects
of the memory defect are isolated to the memory belonging
to the failing domain (R3, R4) the application’s execution
can now be recovered by: 1) discarding any aected memory
compartments, 2) rewinding the application’s stack to a state
prior to when the oending domain began its execution, and
3) performing an application-specic error handling procedure
that avoids triggering the same defect again, e.g., by discarding
the potentially malicious input that caused it.

C. Domain Life Cycle

The overall life cycle of a domain is depicted in Figure 1,
showing the steps taken to isolate execution in a nested domain
from its parent. We consider a call to a function or library F that
takes one in-memory argument and returns a value. The call is
instrumented by code for Secure Domain Rewind and Discard,

Fig. 1: Domain life cycle for calling an internal or library
function F in a nested domain from a parent domain. Dotted
arrows represent execution of user space instructions.

which rst creates a new domain and then allocates separate
stack and heap memory . Then the caller’s execution context,
containing information such as register values, including the
stack and instruction pointers, and signal mask, is saved for
later use by the rewind mechanism (in a manner similar to
C setjmp() [64]). Next, the input argument is copied onto
the new heap and the domain transition step :

• updates the hardware-enforced memory access policy:
grant access to the new domain’s memory areas and protect
all other memory, global data is made read-only;

• switches execution to the stack of the new domain.
After entering the newly spawned domain, all subsequent code
will run in that domain until the next transition. Here, we just
call F which may result in one of two outcomes: A normal
domain exit occurs when F runs to completion and returns
back to the call site without any errors. Execution resumes in
the parent domain , the result is stored in the return variable
, and the nested domain is deleted . At last, control transfers

to developer-provided handler code for normal exits .
An abnormal domain exit occurs if F’s code tries to access

memory past the connes of the domain’s memory area, or a
possible run-time attack is detected by defense mechanisms .
The execution of the domain is halted and privileges of the
parent domain are restored . Application execution is resumed
by restoring the calling environment from the information
stored prior to invoking the oending domain , eectively
rolling back application state to the point before the domain
started executing. The failing domain is deleted and its memory
is discarded . Control transfers to a custom error handler .
In general, after an abnormal domain exit, the application

is expected to take an alternate action to avoid the conditions
that led to the previous abnormal exit before retrying the
operation. For example, a service-oriented application can close
the connection to a potentially malicious client.
Rewinding the application state is limited to the state of

application memory. Operations that have side-eects on an
application’s environment, e.g., reading from a socket, are still
visible to the application after rewinding. Generally, dierent
software architectures may require dierent design patterns for
secure rewinding. We highlight some of these patterns below.
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D. Domain Types and Patterns

As part of process initialization, all application memory,
including stack, heap, and global data, are assigned to the
root domain, which forms the initial isolated domain where
an application executes. Application subroutines are compart-
mentalized into nested domains from which rewinding can be
performed at any point during execution. As the names suggests,
domains can be nested in the sense that several domains can be
entered subsequently starting from the root domain, each with
a dedicated rewind procedure (cf. § III-E). While read-only
access from any nested domain to data in the parent domain
may be allowed, writable access is forbidden in order to contain
any memory safety violations to the nested domain. By default,
nested domains have read access to the root domain to enable
reading global variables. We envision two avors of isolation
with rewinding for application subroutines:

• Protecting the application from a subroutine: Code that
may have unknown memory vulnerabilities, e.g., third-
party software libraries, can be executed in a nested
domain by instrumenting calls to the functionality so that
they execute in their own domain and may be rewound
in case memory-safety violations are detected.

• Protecting a subroutine from its caller: application
code operating on sensitive data such as cryptographic
keys can be isolated from vulnerabilities in its callers,
preventing the leak and loss of such data. For example,
encryption, decryption, or key derivation functions from
the OpenSSL library can be isolated in their own nested
domain to protect the application’s cryptographic keys if
a fault occurs in a calling domain. Listing 2 in § IV-A
shows a concrete example of isolating OpenSSL.

To support the two application scenarios described above, we
identify two design patterns for nested domains. The type of a
domain determines how it continues its life cycle, in particular
what happens to it upon normal domain exit.
Persistent Domains A persistent domain retains all its memory
areas after the application’s execution ow returns to the parent
domain. Another code path may enter the persistent domain
again, at which point access to memory areas that belong to
the persistent domain is again allowed. Practically, in Figure 1,
creation step is only needed for the rst invocation and
deleting the domain in step is omitted.

Modules that maintain state information across invocations
should be isolated in a persistent domain so that their state is
not lost after normal domain exits, e.g., some software libraries
may encapsulate such state by creating "context" objects that
persist across calls. Distinct contexts can be compartmentalized
by ensuring each object is allocated in dierent persistent
domains. An example of this pattern is OpenSSL which can be
instantiated multiple times within an application using dierent
contexts and associated key material. Cryptographic keys of
one context remain isolated in memory from others if each
concurrent context is assigned separate persistent domains.

On abnormal exits from any domain, the rewind mechanism
is triggered and all state of the domain is discarded. This may

Fig. 2: Deeply nested domains. Normal exits occur in reverse
domain entering order. Abnormal exits may deviate from that:
both persistent and transient domain rewind to root domain.

have serious repercussions for an application, if the program
state depends on data isolated in a persistent domain. When,
for example, the abnormal exit leads to the loss of session
keys for a TLS connection, the application may only be able
to recover by re-initializing the aected cryptographic context
and close all connections that were using the now lost keys.
The parent domain may or may not be given access to a

persistent nested domain’s memory. For instance, in the case
of cryptographic libraries, access to the persistent domain’s
memory from any other domain should be blocked to protect
sensitive data stored by the library. In such cases data cannot
be directly passed between the caller and callee in distinct
domains and shared data, e.g., call arguments and results need
to be copied between domains via a designated shared memory
area. This is similar to how data is passed between dierent
protection domains in, e.g., Intel Software Guard Extension
(SGX) enclaves [65].
Transient Domains Memory areas assigned to transient nested
domains persist until the application’s execution ow returns
from such a domain to the parent domain at which point
the stack as well as unused heap memory areas assigned
to the transient nested domain are discarded. For this the
rewind mechanism needs to keep track of memory allocations
in a nested domain. Any allocated memory in a transient
nested domain’s heap area can be merged back to the parent
domain’s heap area or discarded upon a normal domain exit,
depending on the specic application scenario. Generally,
transient domains are most useful for functionality that is
called only once during a typical program invocation.

E. Domain Nesting and Rewinding

Domain nesting enables creating new isolated domains
within others. Each nested domain has exactly one parent
domain, which is responsible for creating the nested domain.
All domains may have zero or more nested child domains, i.e.,
nested domains may be created by already nested domains.
Transient and persistent-style domains can be nested with

each other. One example of a domain nesting conguration
is illustrated in Figure 2. Here, the rst level of domains is
transient and its subsequent nested domain can be persistent.
This setup allows developers to simplify error handling by
directing a rewind from the more deeply nested persistent
domain to also return to the recovery point established for the
transient domain. On the other hand, abnormal exits from the
transient domain do not aect the nested persistent domain
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TABLE I: SDRaD API. udi: user domain index.

API Name Arguments Description
➀ sdrad_init() udi, options Initialize Domain udi
➁ sdrad_malloc() udi, size Allocate size memory in domain udi
➂ sdrad_free() udi, adr Free memory at adr in domain udi
➃ sdrad_dprotect() udi, tddi, Set domain udi’s access permissions

PROT to PROT on target data domain tddi
➄ sdrad_enter() udi Enter Domain udi
➅ sdrad_exit() — Exit Domain udi
➆ sdrad_destroy() udi, options Destroy Domain udi
➇ sdrad_deinit() udi Delete return context of Domain udi

and leave it to developer-provided error handling routines to
decide if the persistent domain needs to be destroyed as well.

At an abnormal domain exit, the rewind can occur from any
nesting level to a lower one as required by an application, but
an abnormal root domain exit terminates the program.

F. Multithreading

The secure rewind mechanism supports POSIX threads. In
most cases, threads need to communicate with each other using
shared memory, hence they need to access root domain memory.
Consequently, it would not be possible to isolate two threads
completely from each other or from the main process.

Nevertheless, it is still possible to isolate partial code paths
within the thread to separate domains, i.e., each thread can still
create nested domains with stacks and heaps that are isolated
from the root domain and other nested domains. Hence, each
thread may recover via rewinding from errors in such nested
domains. If one of the threads suers an abnormal exit from
the root domain, the rewind mechanism cannot recover other
threads and the application must be terminated.

Threads have shared access to global and root domain heap
memory, to per-thread stack areas and thread-local storage. A
shared root domain allows a higher number of parallel threads
to be supported, if the available domains provided by the
underlying memory protection mechanism is limited, as only
threads that instantiate nested domains consume domain slots.
However, one could allow the developer to congure stricter,
non-uniform access privileges between threads.

IV. Prototype Implementation

We implement the concept of secure domain rewind and
discard as SDRaD [27] – a C-language Linux library for the
64-bit x86 architecture using PKU as the underlying isolation
primitive. The library provides APIs to control the life cycle of
domains. SDRaD does not require Linux kernel patches beyond
those potentially needed by run-time defense mechanisms. The
Linux kernel supports PKU from version 4.9. Further details on
the implementation are provided in as a technical report [66].

A. SDRaD API

Developers use the SDRaD API calls shown in Table I
to exibly enhance their application with a secure rewind
mechanism, accounting for the design patterns described above.
Domains are initialized by sdrad_init()➀ where the

developer chooses a unique index to reference the domain in
future API calls. Execution and data domains may be created,

where the latter may hold shareable data pages but cannot
execute code. For execution domains we further distinguish
domains that are accessible or inaccessible to their parent, and
whether an abnormal domain exit should be handled in the
parent or grandparent domain. A domain can only be initialized
once per thread (unless it is deinitialized or destroyed before
by the programmer) and the point of initialization for execution
domains marks the execution context to which control ow
returns in case of an abnormal domain exit.
The API call’s return value fullls two roles. When the

domain is rst initialized, it returns OK on success or an error
message, e.g., if the domain was already initialized in the
current thread. On abnormal domain exit, control ow returns
another time from the init function and the return value signies
the index of the nested domain that failed and was congured
to return to this point. This means that error handling for
abnormal domain exits needs to be dened in a case split on
the return value of the sdrad_init()➀ function.
After initialization, memory in an execution or data

domain can be managed using sdrad_malloc()➁ and
sdrad_free()➂, e.g., to be able to pass arguments into the
domain. Note that this is only allowed for child domains of the
current domain that are accessible. For inaccessible domains, a
shared data domain needs to be used to exchange data. Using
sdrad_dprotect()➃, access permissions to a data domain
can be congured for child domains.
An execution domain initialized in the current domain

can be entered and exited using sdrad_enter()➄ and
sdrad_exit()➅. This switches the stack and heap to the
selected domain and back, and changes the memory access
permissions accordingly. Currently, the SDRaD does not copy
local variables on such domain transitions. Such variables need
to be passed via registers or heap memory.
Supporting the transient domain design pattern, child do-

mains can be deleted using sdrad_destroy()➆, with the
option to either discard the domain’s heap memory or, if
accessible, merge it to the current domain. The persistent
domain pattern is then implemented by simply not destroying
the domain after exiting it, so that it can be entered again.

An important requirement is that a nested execution domain
needs to be destroyed before the function which initialized
that domain returns. Otherwise, the stored execution context to
which to return to would become invalid as it would point to a
stack frame that no longer exists. To provide more exibility,
sdrad_deinit()➇ allows to just discard a child domain’s
execution context but leave its memory intact. Before entering
the domain again, it needs to be re-initialized, setting a new
return context for abnormal exits.
Usage Example. We implement the domain life cycle shown in
Figure 1 for a function F that receives pointer arg to an object
of size size as input and returns an integer-sized value. In the
example, we rst initialize a new accessible execution domain
udi_F for function F ➀. If an abnormal exit occurs in that
domain, control returns here, so we save the error code in err.
If initialization succeeded, we allocate a local variable r in a
register to retrieve the return value later➁. We also allocate
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1 int err = sdrad_init(udi_F, EXECUTION_DOMAIN |
2 ACCESSIBLE | RETURN_HERE); ➀
3 if (err == OK ) {
4 // prepare passing return value and argument
5 register int r asm ("r12"); ➁
6 register void *adr asm ("r13");
7 adr = sdrad_malloc(udi_F, size); ➂
8 if (!adr && size >0) { return MALLOC_FAILED; }
9 if (size >0) { memcpy(adr, arg, size); } ➃

10 sdrad_enter(udi_F); ➄
11 // invoke F on copy of argument and save return value
12 r = F(adr); ➅
13 sdrad_exit(); ➆
14 if (ret) { *ret = r; } ➇
15 sdrad_free(udi_F, adr); ➈
16 sdrad_destroy(udi_F, NO_HEAP_MERGE); ➉
17 }
18 return err;

Listing 1: Using API calls (orange) to call F(arg,size) in its
own domain (pseudocode for Figure 1, error handling omitted).

memory for the input argument at adr in the new domain➂.
Since that domain is accessible, we can copy the argument
directly from the parent domain➃. Afterwards, we enter the
nested domain➄ and invoke F on the copy of the argument,
saving the return value➅. After exiting, we are back in the
parent domain➆. We can copy the return value to the desired
location (which is inaccessible to the nested domain)➇. We free
all temporary memory➈ and destroy the nested domain, freeing
its remaining memory➉. As a side note, calling sdrad_free()
is actually redundant here; sdrad_destroy() would free this
memory as well with the NO_HEAP_MERGE option. Finally, we
return OK in case of normal domain exit, or the error code
otherwise. Users of the shown isolated version of F can then
dene their own error handling depending on this return value.
OpenSSL Listing 2 shows an EVP_EncryptUpdate() wrapper
for OpenSSL that implements the persistent domain pattern in
§ III-D. Here, OpenSSL allocates its data, such as the context
(ctx) ❶ in a domain which is inaccessible from its parent.
The caller can hold a pointer to ctx, but the object itself is
inaccessible to the parent domain. Arguments are copied in via
a data domain ❷. The wrapped function must read buered
input and write its output to its parent domain. There are three
possible design choices for passing data between the respective
domains: 1) the OpenSSL domain has read-only access to
the parent, i.e., it’s called from the root domain; input can
be read directly, but output must be copied through the data
domain used for argument passing ❸, ❺ 2) the parent domain
is inaccessible to the OpenSSL and it must copy both input and
output via the data domain used for argument passing ❸, ❹,
❺ 3) the parent domain is responsible for setting up a shared
data domain between the respective domains and the wrapper
can access the shared area directly via the argument pointers.
This persistent domain can be combined with a transient

domain as shown in Figure 2 to 1) encapsulate the pointer to
ctx within an outer domain, 2) protect the root domain from
errors in the caller, e.g., an out buer of insucient size, and
3) simplify error handling for the OpenSSL domain.

B. Implementation Overview

The SDRaD implementation [27] has four components: 1) a
hardware mechanism for enforcing in-process memory protec-

tion, 2) an isolated monitor data domain that houses control
data for managing execution and data domains, 3) initialization
code that is run on startup of an application that is linked to
SDRaD, setting up the monitor domain and memory protection,
and 4) a trusted reference monitor that realizes the SDRaD
API calls with exclusive access to the monitor data domain.
Memory Protection SDRaD uses PKU (cf. § II-C) as a
hardware-assisted SFI mechanism to create dierent isolated
domains within an application governed by dierent memory
access policies. When a domain is created, a unique protection
key is assigned for it. At each domain transition, PKRU is
updated to grant access to memory areas as permitted for the
newly entered domain, and to prevent access to other memory
areas. Our evaluation platform supports Intel PKU, hence it
allows us to manage up to 15 isolated domains at a time for
each process. Software abstractions for MPK, like libmpk [19],
increase the number of available domains at the cost of falling
back to the much slower mprotect system call.
SDRaD Control Data SDRaD stores global control data in the
monitor data domain for keeping track of, e.g., the registered
domain identiers and the protection key usage. It also stores
per-thread information for domains such as stack size, heap size,
parent domain, and memory access permissions. To support
abnormal domain exits, the currently executing domain and
the saved execution contexts are stored, too.
Initialization An application is compiled with the SDRaD
library to use the rewind mechanism. Then, a constructor
function is executed before main() to assign all application
memory to the initial isolated domain as a root domain
associated with one of the PKU. It also initializes SDRaD global
control data where the default stack and heap size for domains
is congurable through environment variables. Furthermore, it
sets the root domain as active domain, to be updated at domain
transitions by the reference monitor, and nally initializes a
signal handler. For the multithreading scenario, SDRaD has a
thread constructor function as well, that is executed before the
thread start routine function to assign a thread memory area
to a domain and associate it with one of the protection keys.
Reference Monitor The reference monitor records domain
information in SDRaD control data. It also performs domain
initialization, domain memory management, and secure domain
transitions, including updating the memory access policy, and
saving and restoring the execution state of the calling domain.
Only the reference monitor may update the PKRU register to
gain access to the monitor data domain. The monitor code is
executed using the stack of the nested domain that invoked it.
Error Detection Memory access violations are generally
reported to userspace software either via 1) a SEGFAULT
signal, e.g., when a domain tries to write past the connes
of its memory area, or 2) calls to runtime functions in-
serted by instrumentation, e.g., GCC’s stack protector calls
__stack_chk_fail() if a stack guard check fails. Standard
glibc versions of this function terminate the application, but
we replaced it with our own implementation, allowing SDRaD
to respond to stack guard violations. Moreover, during process
initialization, SDRaD sets up its own signal handler for the
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1 int __wrap_EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx❶, unsigned char *out, int *outl, const unsigned char *in, int inl) {
2 register evp_encrypt_update_args_t *args asm ("r12"); // holds copied function arguments and return value, is kept in
3 // a callee-saved register (r12) to remain accessible after
4 . . . // sdrad_enter(OPENSSL_UDI) changes the domain stack
5
6 args = sdrad_malloc(OPENSSL_DATA_UDI , sizeof(evp_encrypt_update_args_t));
7 args->ctx = ctx; // copy ctx from current domain to shared data domain
8 args->inl = inl; // copy inl from current domain to shared data domain
9

10
11 if (out != NULL && inl >= 0) { // inl + cipher_block_size is upper bound for yet unknown output size
12 args->out = sdrad_malloc(OPENSSL_DATA_UDI , inl + cipher_block_size);
13 } else { args->out = NULL; }
14
15
16 if (in != NULL && inl >= 0) {
17 args->in = sdrad_malloc(OPENSSL_DATA_UDI , (size_t)inl);
18 memcpy(args->in, in, inl); // copy in from current domain to shared data domain
19 } else { args->in = NULL; }
20
21 sdrad_enter(OPENSSL_UDI); // execute real EVP_EncryptUpdate in inaccessible domain
22 args->ret = __real_EVP_EncryptUpdate(args->ctx, args->out, &(args->outl), args->in, args->inl);
23 sdrad_exit();
24
25 *outl = args->outl; // copy out outl value from shared data domain
26 if (out != NULL) { // copy out encrypted data from shared data domain
27 memcpy(out, args->out, (size_t)*outl);
28 }
29
30 . . .
31 }

Listing 2: Wrapper function for EVP_EncryptUpdate() that executes OpenSSL in a persistent nested domain (excerpt). Data
is passed between parent and nested domain via shared data domain OPENSSL_DATA_UDI. Error handling is omitted for brevity.

❷

❸ Set up output buer. Replaced with args->out = out if out points to shared data domain.

❹ Set up input buer. Replaced with args->in = in if in points to a readable domain.

❺ Copy out. Omitted if out points to a shared data domain.

SEGFAULT signal, where the cause for a segmentation fault is
given by a signal code (si_code) provided by the runtime to
the signal handler [67], e.g., PKU access rule violations are
reported by SEGV_PKUERR signal code. In Linux, the SEGFAULT
signal is always delivered to the thread that generated it. If the
SDRaD signal handler is triggered by a violation in a nested
domain, it causes an abnormal domain exit. For faults occurring
in the root domain or being attributed to a cause the SDRaD
signal handler cannot handle, the process is still terminated.
SDRaD can be extended to incorporate other run-time error
detection mechanisms, such as Clang CFI [68] or heap-based
overow protections (e.g., heap red zones [21]), improving the
recovery capabilities. Probabilistic and passive protections such
as ASLR do not detect but hinder the exploitation of memory
safety violations. Our rewind mechanism is compatible with
ASLR, as domains are created at run-time.

Rewinding Secure rewinding from a domain is achieved by
the reference monitor saving the execution context of the
parent domain into SDRaD control data when that domain
is initialized. SDRaD uses a setjmp()-like functionality to
store the stack pointer, the instruction pointer, the values of
other registers, and the signal mask for the context to which
the call to sdrad_init() returns. Note that we cannot simply
call setjmp() within sdrad_init() because that execution
context would become invalid as soon as the initialization
routine returns. On an abnormal domain exit, the saved parent
execution state is used to restore the application’s state to
the initialization point prior to entering the nested domain by
using longjmp(). This rewind lets the application continue
from that last secure point of execution that is now redirected
to the developer-specied error handling code. To simplify
programming under these non-local goto semantics [64], we

only allow to set the return point once per domain and thread.
Moreover, the convention that a domain needs to be destroyed
or deinitialized before the function that initialized it returns,
ensures that the saved execution context is always valid.

C. Memory Management and Isolation

Our recovery mechanism is enabled by creating dierent
domains within an application and ensuring that a memory
defect within a domain only aects that domain’s memory, not
the memory of others. Using the underlying SFI mechanism
based on PKU, domains are mutually isolated.
Global Variables We modify the linker script to ensure that
global variables are allocated in a page-aligned memory region
that can be protected by PKU. At application initialization, all
global variables are assigned to the root domain, but if that one
was completely isolated, globals would not be accessible to
nested domains. As a compromise, we make the root domain
by default read-only for all nested domains. Write access to
global data may then be achieved by allocating it on the heap
of a shared data domain, referenced by a global pointer. Note
that this approach breaks the condentiality of the root domain
towards nested domains. As our main goal is integrity, and
condential data can still be stored and processed in separate
domains, we nd it a reasonable trade-o for SDRaD.
Stack Management SDRaD creates a disjoint stack for each
execution domain to ensure that the code running in a nested
domain cannot aect the stacks of other domains. The stack area
is allocated when rst initializing a domain and protected using
the protection key assigned to that domain. As an optimization,
we never unmap the stack area, even when the domain is
destroyed, but keep it for reuse, i.e., when a new domain is
initialized. At each domain entry, we change the stack pointer
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to the nested domain stack pointer and push the return address
of the sdrad_enter() call, so that the API call returns to
the call site using the new stack. Then we update the PKRU
register according to memory access policy for that domain.
A similar maneuver is performed when switching back to the
parent domain’s stack via sdrad_exit().
Heap Management Because heap isolation in SDRaD requires
memory management with strict guarantees that allocations
within a domain are satised only from memory reserved for
that domain, we opted to use an allocator that natively supports
fully disjoint heap areas instead of the default glibc GNU
Allocator [69]. For our implementation, we chose the Two-
Level Segregated Fit (TLSF) allocator [70], [71]. TLSF is a
"good-t", constant-time allocator that allocates memory blocks
from one or more pools of memory. Each SDRaD domain is
assigned its own TLSF control structure and memory pool that
correspond to the domain’s subheap. The initial size of these
pools is congurable via an environmental variable.
We interpose functions from the malloc() family with

wrappers and place SDRaD before libc in library load order.
Upon rst call to memory management within a domain, its
heap is initialized and the memory pool is associated with
the domain’s protection key. Having independent subheaps
allows the developer to either discard or merge a domain’s
subheap with the parent’s when the former domain is destroyed.
Note however, that subheaps are never merged back after
abnormal exits, as the data must be considered corrupted.
We extended TLSF with a straight-forward implementation
of subheap merging but omit a detailed description for brevity.

V. Case Studies

We evaluate the performance of SDRaD with three dif-
ferent real-world case studies: Memcached, NGINX, and
OpenSSL. Two aspects are evaluated: 1) rewinding latency
on an abnormal exit, 2) performance impact of the isolation
mechanism. We run our experiments on Dell PowerEdge
R540 machines with 24-core MPK-enabled Intel(R) Xeon(R)
Silver 4116 CPU (2.10GHz) having 128 GB RAM and using
Ubuntu 18.04, Linux Kernel 4.15.0. We compiled Memcached
and NGINX with -O2 optimizations, -pie (for ASLR),
-fstack-protector-strong, and -fcf-protection.

A. Memcached

Memcached [72] is a general-purpose distributed memory
caching system, which is used to speed up database-driven
applications by caching database content. To do so eciently,
Memcached stores its state in non-persistent memory; after
termination and restart, clients must start over and resend a large
amount of requests to return to the situation prior to the restart.
Even in real-world deployments with built-in redundancy and
automatic remediation, small outages can take up to a few
minutes to re-route requests to an unaected cluster [73].
Several studies propose to use low latency persistent storage
for Memcached [74], [75] but these solutions come with a non-
negligible performance overhead. As availability and resilience
of Memcached to unforeseen failures is of high importance, it

Fig. 3: Sequence diagram of client request for Memcached with
SDRaD. Function drive_machine() is executing in nested
domain D until normal or abnormal domain exit.

is a worthwhile target for hardening with SDRaD. The main
thread in Memcached accepts connections and dispatches them
among worker threads to handle related requests. Memcached
uses a hash table to map keys to an index and slab allocation
to manage the in-memory database. Memcached has an event-
driven architecture, handling each client request as an event.
The clients can send get, set, and update commands with key
and value arguments. To handle a request, command parser
subroutines in Memcached classify the client request, then the
key-value pairs are fetched from, inserted in, or updated in
the database. If a client event contains a malicious request
leading to memory corruption, the database and hash table, as
well as the complete application memory area, are corrupted
and Memcached must be restarted. As a result, one malicious
request aects the availability of the service to all clients.
Memcached with SDRaD We propose that each client event
should be handled in a nested domain. In case of memory
corruption, the abnormal domain exit occurs in the nested
domain, we discard the related nested domain contents and
come back to the root domain securely. Memcached closes
the related connection, and it can continue its execution,
handling another client request without restarting. Figure 3
shows a sequence diagram of Memcached with SDRaD. We
congure SDRaD with a shared root domain (see in § III-F),
because the main thread needs to communicate with the worker
threads. Each event is handled using the drive_machine()
(6) function with a corresponding connection buer. We isolate
this function using the SDRaD API. Recall from § III-D that
nested domains may only have read access to data that belongs
to the parent domain. Nevertheless, certain subroutines, such
as drive_machine(), need to update shared state residing in
a parent domain, e.g., the connection buer. As a solution,
the event handler that calls drive_machine() initializes an
accessible, nested domain D (3) and makes a deep copy of the
connection bufer that is made available to drive_machine()
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(4). It then enters D (5) and calls drive_machine() (6) to
handle the client request, working on a copy of the connection
buer. After successfully handling the request, it exits from
D (7), the original connection buer in the parent domain
is updated with any changes present in the shared copy (8).
On abnormal domain exit, the copied connection buer is
discarded. Since the event handler returns after handling the
request, we need to invalidate the saved execution context of
D. As drive_machine() does not allocate persistent state in
D, we could use the transient domain pattern and destroy D.
However, for eciency, we reuse the copied connection buer
used by the domain, hence sdrad_deinit() (10) is used.

The drive_machine() function also needs to read and write
the hash table and database to perform look-ups, insertions, and
updates. We allocate it in a dedicated data domain, accessible
by the nested domain of each thread.

To allow inserts and updates, we wrap the slabs_alloc()
function, that normally returns a pointer to a memory area in
the database, to return a copy of that area to insert the key-
value pair. Similarly, we wrap store_item() which stores
new data and updates the hash table. Each event handler rst
performs its operation on a copy of the corresponding item.
On normal domain exits from D, we insert the key-value pair
to the database, and update the hash table (9). On an abnormal
domain exit (12-13), the corrupt key-value pair is discarded
along with all other domain memory. Note that this solution
delays updates to the database. However, due to the atomic
nature of the Memcached requests, consistency is not aected.

Our changes were limited to two source les in Memcached
and 484 new lines of wrapper code. In total, the changes
amounted to ~550 LoC of the 29K SLoC code base (~2%).
Memcached uses a shared mutex to synchronize worker

threads. Here, our copying mechanism for shared data does not
work, because it would hide concurrent accesses to the mutex
and break the synchronization. We opted to create a separate
data domain for the mutex that every worker can access. See
§ VI for a security discussion of this scheme.
Rewinding Latency We reproduced CVE-2011-4971 [76] to
verify the SDRaD rewind mechanism and compiled Memcached
v1.4.5 with SDRaD. This CVE crashes Memcached via a large
body length value in a packet, creating a heap overow but
SDRaD ensures that this overow is limited to current execution
domain, hence it triggers the domain violation and an abnormal
domain exit occurs. We measured the mean latency of abnormal
domain exit starting with catching SEGFAULT until after we
close the corresponding connection to 3.5µs (σ=0.9µs). For
comparison, in our experiments the restart and loading time
for 10GiB of data into Memcached was about 2 minutes. Thus,
an attacker who successfully launches repeated attacks could
knock out the Memcached service without rewinding (DoS).
While this is clearly dominated by the loading time, even
applications without such volatile state, but ultra-reliable low-
latency requirements, can benet from rewinding. For reference,
we measured the mean latency to restart the Memcached
container automatically at about 0.4s (400000µs, σ=19000µs).
Performance Impact We used the Yahoo! Cloud Service

Fig. 4: Throughput of dierent Memcached instrumentations
for dierent numbers of threads.

Benchmark (YCSB) [77] to test the impact of SDRaD on
Memcached performance. YCSB has two phases: a loading
phase that populates the database with key-value pairs, and
a running phase which performs read and update operations
on this data. We used workloads with sizes of 1KiB, with
a read/write distributions of 95/5. For our measurements, we
stored 1×107 key-value pairs (1KiB each) and performed 1×108
operations on those pairs. Operations were performed with a
Zipan distribution over the keys. We compiled Memcached
v1.6.13 and evaluated the performance with the TLSF allocator
and with SDRaD as described in §V-A. We compare the results
against YCSB on unmodied Memcached. Figure 4 shows the
load and running phase throughput (operations/second) of the
three versions for 1, 2, 4, and 8 workers over 5 benchmark
runs. Each thread was pinned to separate CPU cores. We used
32 YCSB clients with 16 threads pinned to separate cores for
each test. We fully saturated Memcached cores for 1, 2, and 4
threads but were unable to reach saturation for 8 threads. We
concluded that TLSF has negligible impact on throughput in all
our tests (< 1%). For Memcached augmented with SDRaD the
load and running phase overhead is 2.9% / 4.1%, respectively,
for 4 threads, and 4.5% / 5.5% for 2 threads. SDRaD introduced
a worst-case overhead of 7.0% / 7.1% for a single thread. We
measured a performance degradation of < 4.1% for 8 threads
but lack condence in the soundness of that result as the
CPU was not saturated. We measured the memory overhead
of SDRaD by comparing the maximum resident set size (RSS)
after the YCSB load phase and of Memcached with SDRaD
to the baseline. The mean RSS increase is 0.4% (σ=171KiB).

B. NGINX

NGINX [78] is an open-source web server implemented as
a multiprocessing application with a master process and one
or more worker processes. The master process is responsible
for maintaining the worker processes that handle client HTTP
requests for several connections at a time. If a malicious client
request leads to memory corruption, the worker process may
crash and the master process restarts it, however all active
connections of that worker are lost. Due to its complexity and
exposure to untrusted inputs, the HTTP parser is a vulnerable
component of NGINX. Similar to [79], we propose that each
client HTTP request is parsed in a nested domain. Thus, if
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a memory corruption is detected in the parser, an abnormal
domain exit occurs and we discard the related nested domain
content to come back to the root domain securely without
restarting the worker process. The related connection is closed,
but all other connections are unaected.
We sandboxed the HTTP parser (ngx_http_parser.c) to

execute in an accessible permanent nested domain, by in-
strumenting all NGINX parser functions using the SDRaD
API. NGINX creates a temporary memory pool for each client
request to hold a request bufer. We direct the allocation of
these pools to a separate data domain that is accessible by the
nested domain. The request buer data structure links back to
header data and URI data in the connection buers. To protect
this root domain data and make it accessible to the parser, it is
copied into the nested domain and the results are copied back
on domain exit. The NGINX Parser executes multiple phases,
e.g., parsing request lines or headers. Thus, domain transitions
occur repeatedly in one request. On an abnormal domain exit, it
is not important which parser phase has corrupted the memory:
we always close the corresponding connection. Hence we save
as execution context the rst entry point of the NGINX parser
to come back to at an abnormal domain exit. Our changes were
limited to one le in NGINX and 195 new lines of wrapper
code. In total, the changes amount to ~220 LoC of the 150K
SLoC code base (0.15%).
Rewinding Latency We reproduced CVE-2009-2629 [80] to
verify the rewind mechanism and compiled NGINX v.0.6.39
with SDRaD. The CVE causes a buer underow in the linked
connection buer data. By having the parser operate on copies
of that data in the nested domain, the underow triggers
a domain violation and thus an abnormal domain exit. We
measured the latency of the abnormal domain exit starting from
catching SEGFAULT to accepting a new connection. The mean
latency is 3.4µs (σ=0.67µs). We compared it with restarting
the worker process by the master process for reference. The
mean latency is 996µs (σ=44µs). It should be noted however,
that avoiding service disruption for other clients by preserving
all connections handled by the worker process is arguably the
more important benet of SDRaD here.
Performance Impact We measured the SDRaD overhead to
connect to NGINX remotely over keep-alive HTTP connec-
tions using ApacheBench tool. Each test has 75 concurrent
connections and all clients request the same le size ranging
from 0KiB to 128KiB. Figure 4 shows mean throughput
(requests/second) of the three versions of NGINX with one
worker process for dierent le sizes over 5 benchmark runs.
We compiled NGINX v.1.23.1 and compared it to NGINX with
TLSF allocator and SDRaD. The latter introduced overheads
between 1.6% (128KiB) and 6.5% (1KiB). We scaled the
number of workers for NGINX with SDRaD and observed that
the overhead is independent of that number, as expected. We
measured the memory overhead of SDRaD from the maximum
RSS after benchmarking the 128-KiB le size with four worker
processes, and comparing the RSS of NGINX with SDRaD
to the baseline. The mean RSS increase is 3.06% (σ=50KiB).
Proling domain switching, we observed that 30% − 50% of

Fig. 5: Throughput of dierent NGINX instrumentations with
one worker for dierent le sizes.

the cost comes from writing the PKRU register, which ushes
the processor pipeline [19], [47].

C. OpenSSL

SDRaD allows for isolating a library without changing it,
enabling later integration into applications. As discussed in
§ III-D, we may either protect the application from the library
or the library from the application. To demonstrate the rst case,
we reproduced CVE-2022-3786 in OpenSSL 3.0.6 [81]. When
OpenSSL processes X.509 client certicates, the CVE causes a
buer overow that puts an arbitrary number on the stack and
may cause denial of service by crashing the application. It can
be detected by stack canaries, so we isolated the vulnerable
X.509 certication verication API of OpenSSL and compiled
NGINX with that library and SDRaD. We veried that the CVE
triggers a rewind and NGINX closes the related connection and
reinitializes the OpenSSL domain before continuing execution.
We added ~14 LoC in NGINX code base, ~18 LoC in OpenSSL
code, as well as ~140 new lines of wrapper code.
To demonstrate protecting OpenSSL from the rest of the

program, we instrumented OpenSSL 1.1.0 according to all
three design choices explained in § IV-A. We evaluated
the performance impact by adapting the built-in OpenSSL
speed benchmark and running the aes-256-gcm cipher via
the EVP_EncryptUpdate function (cf. Listing 2) for 3s,
measuring the number of encryptions. As expected, memcpy
operations cause notable performance overhead and the third
option, a parent-managed shared domain, performed best. Even
without copy operations, SDRaD substantially degraded the
performance of cryptographic operations for small input sizes
(4% to 80%). For more realistic input sizes ≥32KiB we did
not measure any statistically signicant overhead (< 2%).

VI. Discussion

Security Evaluation Our primary security requirement is
R1 The mechanism must allow the application to continue

operation after system defenses (A2) detect an attack.
Our proposal satises this requirement by compartmentalizing
applications into isolated domains where an attack against a
child domain can be detected, which leads to the termination
of that domain, while the parent domain is informed and can
continue operation. With respect to attack detection, we assume
that an attack or fault will exhibit an illegal memory access
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that triggers a SEGFAULT signal. We then use signal handlers
to detect and handle the failure, leading to a termination of the
crashed child domain and a rewinding of the parent domain
to a well-dened state. Compartmentalization is achieved by
implementing the following two requirements:
R2 The mechanism must ensure that the integrity of memory

after recovering from the detected attack is maintained.
R3 Run-time attacks that aect one domain must not aect

the integrity of memory in other domains.
In our implementation of SDRaD, we use PKU as a mechanism
to enforce in-process isolation while facilitating ecient do-
main switches. The security of this mechanism critically relies
on protecting potential gadgets in the SDRaD implementation
that allow an attacker to manipulate the PKRU register.

To guarantee the security of SDRaD, the following orthogo-
nal defenses need to be in place: 1) PKU crucially relies on
untrusted domains to not contain unsafe WRPKRU or XRSTOR
instructions that manipulate the PKRU register [82]. This can
be guaranteed through W⊕X and binary inspection [47].
Alternatively, hardware designs for PKU-like security features
restrict access to userspace conguration registers [51]. 2) Since
the SDRaD necessarily contains WRPKRU instructions, we must
employ a CFI mechanism to protect the API implementation of
Reference Monitor and statically ensure that its API does not
contain abusable WRPKRU or XRSTOR gadgets. 3) An alternative
way to modify PKRU is by utilizing sigreturn is described
in [82], which can be mitigated by ASLR [83] and requires
kernel-level authentication of sigframe data [15]. 4) Existing
PKU sandboxes do not suciently safeguard the syscall
interface [82], [84]. Several researchers propose ecient syscall
ltering to prevent untrusted domains from invoking unsafe
syscalls [53], [84]. With the above security mechanisms in
place, SDRaD satises our fourth requirement:
R4 The attacker must not be able to tamper with components

responsible for isolation or transitions between domains,
or data used as part of the rewinding process.

It is possible to implement secure rewind and discard of
isolated domains on top of other isolation mechanisms e.g.,
within Intel SGX to equip enclaves with rewinding or by
using capability-based enforcement of isolation, e.g., CHERI.
Such uses will incur dierent low-level security requirements
and exhibit dierent performance characteristics. Furthermore,
SDRaD is not limited to rely on SEGFAULT handling but could
employ dierent attack oracles that, e.g., trigger when a domain
invokes an unexpected system call.
Applicability As highlighted earlier, secure rewind and discard
of isolated domains is particularly suited for service-oriented
applications that need strong availability guarantees and may
hold volatile state like client sessions, TLS connections, or
object caches. Redundancy and load balancing can minimize the
impact of DoS attacks, but loss of volatile state can still degrade
service quality for clients, which our approach mitigates.

As demonstrated by our case study on Memcached (§ V-A),
applications such as caching (proxy) servers and web accelera-
tors which exhibit the cold start problem, i.e., the system does

not reach its normal operation capacity until some time after
initial start or restart, can benet greatly from SDRaD.
A prime target for our mechanism are subroutines and

libraries that handle sequences of external, untrusted, un-
sanitized data, e.g., functions that perform input validation,
JavaScript engines in web browsers, database front-ends, or
video, image, and document renderers, due to a heightened
degree of exposure towards potential attacks. Isolating such
components in their own domain allows recovering from
potential memory corruptions. Furthermore, rewindings in long-
running services may be reported as incidents to a Security
Information and Event Management system, serving as early
warning signals of an attack campaign. Blocking malicious
clients via rewall rules as a response may then shield the
overall system from repeated attacks.
In practice, the specic setup of domains and protections

as well as the acceptable trade-o between the performance
impact and provided benet in resiliency will depend highly
on application architecture and use case. As such, our design
incorporates dierent options for compartmentalization, aiding
adoption of the rewind mechanism in new and existing
developments. We see retrotting applications written in unsafe
programming languages as a compelling use case in-lieu of a
complete re-write in a memory-safe language.

Applications written in memory-safe languages are inherently
protected against the run-time attacks we consider in this work.
Nevertheless, even such applications may depend on unsafe
libraries called via foreign function interfaces (FFIs). Adapting
SDRaD for use with FFI from other programming languages
is, however, outside the scope of this work.
Limitations We presented several examples where our ap-
proach substantially improved the dependability of relevant
applications and where the refactoring required one to three
person weeks of a developer not previously familiar with the
code base. The eort is comparable to retrotting applications
to make use of Trusted Execution Enviroments (TEEs) such
as Intel SGX and the process may be supported by automated
tools, e.g., [85]. However, it is clear that not all applications
can be easily compartmentalized and refactored to make use of
SDRaD. For example, applications that rely on global mutexes
may suer from availability issues when a child domain holding
a lock crashes and the lock is not released prior to continuation
of the parent domain. Options for resolving this are, e.g., an
SDRaD-aware locking mechanism as part of our library, or to
employ local locks with well-dened scope instead of global
locks. This also aids serializing access, e.g., when domains
operate on copies of protected objects. Generally, isolating
routines that work on shared state is tricky but possible using
the deferred update method demonstrated for Memcached, as
long as the isolated routine updates the shared state atomically
and at most once.

Another potential issue comes with complex data structures
used by target applications. Similar to other strong isolation
mechanisms such as Intel SGX, data needs to be copied into
the address space of the protection domain [86], which is
done by entry wrappers. Both, manual as well as automated
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generation of these wrappers can be error prone and may
hamper security [87]. Generally, domain transitions and domain
termination bear subtle risks. Currently, condentiality of child
domain data is not guaranteed after destroying it and we leave
it to the developer to realize such requirements, e.g., scrub
sensitive allocations from memory before leaving the domain.

Using SDRaD to increase the availability of long-running ser-
vices may open up a side-channel attack surface as observable
eects of a rewind (e.g., delayed execution) can give an attacker
insights into an application’s execution. Coupled with the
absence of re-randomization of the application’s memory layout,
an attacker could potentially use this to break probabilistic
defenses such as ASLR. A potential protection against such
attacks is to force an application restart after a congurable
number of rewindings, similarly to probabilistic defenses for
pre-forking applications [14].
Moreover, the defense mechanisms used in our approach

are not perfect, i.e., memory or control ow may still be
compromised by an undetected attack. While our approach is
orthogonal to the mechanisms used, the compartmentalization
of a program into domains may still help discover subsequent
exploitation of such compromise more quickly as malicious
memory accesses may potentially cause domain violations.

Ultimately, the security of SDRaD depends on the correctness
of our library implementation and further exploration of the
attack surface as well as potentially formal verication of our
code are envisaged to harden our approach.

VII. Related Work

Hardware-assisted compartmentalization The idea of using
MPK for compartmentalizing applications is not new; PKU in
64-bit x86 is used to augment SFI approaches that generally
suer from high enforcement overheads [23], [88]. Such work
falls into two categories: 1) in-process isolation [44]–[47],
[51]–[56], and 2) isolation for unikernels and library OSs [48]–
[50]. Lack of PKRU access control has been scrutinized for
leaving PKU-based schemes vulnerable to bypass of established
isolation domains [53], [82], [84]. Proposed countermeasures
include code rewriting [45], binary inspection [47], system
call ltering [53], [84] and variations on the PKU hardware
design [51], [89], [90]. Secure multi-threading has also been
considered [54], [91], [92]. However, in-process SFI does not
consider how to recover from attacks. This work addresses
this gap by introducing capabilities for secure rewinding.
Light-Weight Contexts [34] introduce MMU-based in-process
isolation with a notion of rewinding. In dierence to our
work, [34] requires OS extensions and has unclear performance
characteristics. Capability schemes, such as CHERI [93], [94]
also enables compartmentalized fault isolation. CompartOS [38]
provides recovery capabilities, but unlike SDRaD, it is geared
toward safety-critical embedded systems, not COTS processors.
Checkpoint & restore Existing approaches to checkpoint
& restore, such as CRIU [95] provide support for process
snapshots that can enable rollback-like functionality. However,
checkpoint & restore approaches generally suer from high
overheads due to relying on reproducing process memory, do

not consider in-memory attacks in their threat models [30]–[33],
[96], or target special computing paradigms, such as functions-
as-a-service [97], [98]. SDRaD avoids these drawbacks by
utilizing in-process isolation to limit the scope of attacks and
to ensure the integrity of memory after rewinding.
N-variant Execution N-variant Execution (NVX) [99] provides
resilience by introducing redundancy through running multiple,
articially diversied variants of the same application in tandem
and terminating instances that show divergent behavior. While
SDRaD shares the goal of improving software resilience, our
work targets use cases for which the high cost of replicating
computations and I/O across each instance is impractical.
SDRaD In comparison with related work, SDRaD aims at
improving dependability of applications on COTS processors,
e.g., in cloud settings, allowing recovery from attacks that
compromise heap or stack memory. SDRaD requires no OS
changes, incurs comparatively small runtime overheads and
enables very fast application recovery, at the expense of a non-
trivial but feasible engineering eort to adapt the application.
This combination of features makes our approach unique in
the area of dependable software.

VIII. Conclusion & Future Work

We presented the novel concept of secure rewind and
discard of isolated domains, which complements protection
mechanisms against memory safety vulnerabilities. It provides
a hardening mechanism to recover from detected violations,
thus improving the availability and resilience of software ap-
plications. At its core, secure rewind uses hardware-assisted in-
process memory isolation to sandbox exposed functionality in
separate domains: a compromise in one domain cannot spread
to other parts of a program’s memory. When a compromise
is detected by selected defense mechanisms, a rewinding to a
previously dened consistent state of the application occurs,
enabling error handling and eciently resuming the application.

We introduced SDRaD, our prototype library implementation
of secure domain rewind and discard. We demonstrated its
applicability to real software by adding it to the multi-threaded
Memcached system, multiprocessing NGINX web server, and
the OpenSSL library, exhibiting marginal performance overhead.
Applications prot not only from faster recovery times due to
the rewind mechanism, but also from avoiding possible service
disruption for clients after an application crash and subsequent
connection loss. In practice, no compartmentalization strategy
will likely be able to recover from each and every fault
or attack. Still, providing an amenable, secure, and ecient
implementation of the secure rewind mechanism will ll an
important gap in the current software security architecture.
A technical report with extended insights into the work-

ings of SDRaD, our prototypic implementation, and further
elaboration on the cases studies is available at [66]. Our
implementation artifacts are available under a BSD license
on GitHub [27]: https://secure-rewind-and-discard.github.io/
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